ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of our recent study on the interactions between a giant planet and a self-gravitating gas disk. We investigate how the disks self-gravity affects the gap formation process and the migration of the giant planet. Two series of 1- D and 2-D hydrodynamic simulations are performed. We select several surface densities and focus on the gravitationally stable region. To obtain more reliable gravity torques exerted on the planet, a refined treatment of disks gravity is adopted in the vicinity of the planet. Our results indicate that the net effect of the disks self-gravity on the gap formation process depends on the surface density of the disk. We notice that there are two critical values, Sigma_I and Sigma_II. When the surface density of the disk is lower than the first one, Sigma_0 < Sigma_I, the effect of self-gravity suppresses the formation of a gap. When Sigma_0 > Sigma_I, the self-gravity of the gas tends to benefit the gap formation process and enlarge the width/depth of the gap. According to our 1-D and 2-D simulations, we estimate the first critical surface density Sigma_I approx 0.8MMSN. This effect increases until the surface density reaches the second critical value Sigma_II. When Sigma_0 > Sigma_II, the gravitational turbulence in the disk becomes dominant and the gap formation process is suppressed again. Our 2-D simulations show that this critical surface density is around 3.5MMSN. We also study the associated orbital evolution of a giant planet. Under the effect of the disks self-gravity, the migration rate of the giant planet increases when the disk is dominated by gravitational turbulence. We show that the migration timescale associates with the effective viscosity and can be up to 10^4 yr.
153 - Cun-Hui Zhang , Jian Huang 2008
Meinshausen and Buhlmann [Ann. Statist. 34 (2006) 1436--1462] showed that, for neighborhood selection in Gaussian graphical models, under a neighborhood stability condition, the LASSO is consistent, even when the number of variables is of greater ord er than the sample size. Zhao and Yu [(2006) J. Machine Learning Research 7 2541--2567] formalized the neighborhood stability condition in the context of linear regression as a strong irrepresentable condition. That paper showed that under this condition, the LASSO selects exactly the set of nonzero regression coefficients, provided that these coefficients are bounded away from zero at a certain rate. In this paper, the regression coefficients outside an ideal model are assumed to be small, but not necessarily zero. Under a sparse Riesz condition on the correlation of design variables, we prove that the LASSO selects a model of the correct order of dimensionality, controls the bias of the selected model at a level determined by the contributions of small regression coefficients and threshold bias, and selects all coefficients of greater order than the bias of the selected model. Moreover, as a consequence of this rate consistency of the LASSO in model selection, it is proved that the sum of error squares for the mean response and the $ell_{alpha}$-loss for the regression coefficients converge at the best possible rates under the given conditions. An interesting aspect of our results is that the logarithm of the number of variables can be of the same order as the sample size for certain random dependent designs.
We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disks self gravity, we developed and adopted an textbf{Ant ares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planets Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disks self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disks self gravity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا