ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminous debris disks of warm dust in the terrestrial planet zones around solar-like stars are recently found to vary, indicative of ongoing large-scale collisions of rocky objects. We use Spitzer 3.6 and 4.5 {mu}m time-series observations in 2012 an d 2013 (extended to 2014 in one case) to monitor 5 more debris disks with unusually high fractional luminosities (extreme debris disk), including P1121 in the open cluster M47 (80 Myr), HD 15407A in the AB Dor moving group (80 Myr), HD 23514 in the Pleiades (120 Myr), HD 145263 in the Upper Sco Association (10 Myr), and the field star BD+20 307 (>1 Gyr). Together with the published results for ID8 in NGC 2547 (35 Myr), this makes the first systematic time-domain investigation of planetary impacts outside the solar system. Significant variations with timescales shorter than a year are detected in five out of the six extreme debris disks we have monitored. However, different systems show diverse sets of characteristics in the time domain, including long-term decay or growth, disk temperature variations, and possible periodicity.
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial p lanet zone around a 35-million year-old solar analog star. We observed a substantial brightening of the debris disk at 3-5 {mu}m, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا