ترغب بنشر مسار تعليمي؟ اضغط هنا

We report semiconducting behavior of monolayer graphene enabled through plasma activation of substrate surfaces. The graphene devices are fabricated by mechanical exfoliation onto pre-processed SiO2/Si substrates. Contrary to pristine graphene, these graphene samples exhibit a transport gap as well as nonlinear transfer characteristics, a large on/off ratio of 600 at cryogenic temperatures, and an insulating-like temperature dependence. Raman spectroscopic characterization shows evidence of sp3 hybridization of C atoms in the samples of graphene on activated SiO2/Si substrates. We analyze the hopping transport at low temperatures, and weak localization observed from magnetotransport measurements, suggesting a correlation between carrier localization and the sp3-type defects in the functionalized graphene. The present study demonstrates the functionalization of graphene using a novel substrate surface-activation method for future graphene-based applications.
Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2, persistent photoconductivity (PPC) at different levels has been reported. However, a detailed study of the PPC effect and its mechanism in MoS2 is still not available, despite the importance of this effect on the photoresponse of the material. Here, we present a systematic study of the PPC effect in monolayer MoS2 and conclude that the effect can be attributed to random localized potential fluctuations in the devices. Notably, the potential fluctuations originate from extrinsic sources based on the substrate effect of the PPC. Moreover, we point out a correlation between the PPC effect in MoS2 and the percolation transport behavior of MoS2. We demonstrate a unique and efficient means of controlling the PPC effect in monolayer MoS2, which may offer novel functionalities for MoS2-based optoelectronic applications in the future.
Using functional renormalization group we investigated possible superconductivity in doped Sr$_2$IrO$_4$. In the electron doped case, a $d^*_{x^2-y^2}$-wave superconducting phase is found in a narrow doping region. The pairing is driven by spin fluct uations within the single conduction band. In contrast, for hole doping an $s^*_{pm}$-wave phase is established, triggered by spin fluctuations within and across the two conduction bands. In all cases there are comparable singlet and triplet components in the pairing function. The Hunds rule coupling reduces (enhances) superconductivity for electron (hole) doping. Our results imply that hole doping is more promising to achieve a higher transition temperature. Experimental perspectives are discussed.
We present prominent photoresponse of bio-inspired graphene-based phototransistors sensitized with chlorophyll molecules. The hybrid graphene-chlorophyll phototransistors exhibit a high gain of 10^6 electrons per photon and a high responsivity of 10^ 6 A/W, which can be attributed to the integration of high-mobility graphene and the photosensitive chlorophyll molecules. The charge transfer at interface and the photogating effect in the chlorophyll layer can account for the observed photoresponse of the hybrid devices, which is confirmed by the back-gate-tunable photocurrent as well as the thickness and time dependent studies of the photoresponse. The demonstration of the graphene-chlorophyll phototransistors with high gain envisions a viable method to employ biomaterials for graphene-based optoelectronics.
191 - Q.-H. Wang , C. Platt , Y. Yang 2013
In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr$_2$RuO$_4$ is the first prime candidate for topological chiral p-wave superconductivity, wh ich has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid $^3$He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wavevectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular we show the small wavevector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we sh ow that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا