ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted two-dimensional bilayer materials exhibit many exotic physical phenomena. Manipulating the twist angle between the two layers enables fine control of the physical structure, resulting in development of many novel physics, such as the magic-an gle flat-band superconductivity, the formation of moire exciton and interlayer magnetism. Here, combined with analogous principles, we study theoretically the near-field radiative heat transfer (NFRHT) between two twisted hyperbolic systems. This two twisted hyperbolic systems are mirror images of each other. Each twisted hyperbolic system is composed of two graphene gratings, where there is an angle {phi} between this two graphene gratings. By analyzing the photonic transmission coefficient as well as the plasmon dispersion relation of twisted hyperbolic system, we prove that the topological transitions of the surface state at a special angle (from open (hyperbolic) to closed (elliptical) contours) can modulate efficiently the radiative heat transfer. Meanwhile the role of the thickness of dielectric spacer and vacuum gap on the manipulating the topological transitions of the surface state and the NFRHT are also discussed. We predict the hysteresis effect of topological transitions at a larger vacuum gap, and demonstrate that as thickness of dielectric spacer increase, the transition from the enhancement effect of heat transfer caused by the twisted hyperbolic system to a suppression. This technology could novel mechanism and control method for NFRHT, and may open a promising pathway for highly efficient thermal management, energy harvesting, and subwavelength thermal imaging.
A thermal diode based on the asymmetric radiative heat transfer between nanoparticles assisted by the nonreciprocal graphene plasmons waveguides is proposed in this work. The thermal diode system consists of two particles and a drift-biased suspended graphene sheet in close proximity of them. Nonreciprocal graphene plasmons are induced by the drift currents in the graphene sheet, and then couple to the waves emitted by the particles in near-field regime. Based on the asymmetry with respect to their propagation direction of graphene plasmons, the thermal rectification between the two particles is observed. The performance of the radiative thermal diode can be actively adjusted through tuning the chemical potential or changing the drift currents in the graphene sheet. With a large drift velocity and a small chemical potential, a perfect radiative thermal diode with a rectification coefficient extremely approaching to 1 can be achieved within a wide range of the interparticle distance from near to far-field. The dispersion relations of the graphene plasmons are adopted to analyze the underlying physics of the rectification effect. In addition, due to the wide band characteristic of the nonreciprocal graphene plasmons, the driftbiased graphene can act as a universal platform for the thermal rectification between particles. The particles with a larger particle resonance frequency are much more preferred to produce a better thermal diode. This technology could find broad applications in the field of thermal management at nanoscale
In this Rapid Communication, we theoretically demonstrate that near-field radiative heat transfer (NFRHT) can be modulated and enhanced by a new energy transmission mode of evanescent wave, i.e. the nonreciprocal surface plasmons polaritons (NSPPs). In addition to the well-known coupled surface plasmon polaritons (SPPs), applying a drift current on a graphene sheet leads to an extremely asymmetric photonic transmission model, which has never been noted in the noncontact heat exchanges at nanoscale before. The coupling of plasmons in the infrared bands dominates the NFRHT, associated with low loss (high loss and ultrahigh confinement) traveling along (against) the current. The dependence of NSPPs on the drift-current velocity as well as the vacuum gap is analyzed. It is found that the coupling of NSPPs at smaller and larger gap sizes exhibits different nonreciprocities. Finally, we also demonstrate that the prominent influence of the drift current on the radiative heat flux is found at a low chemical potential. These findings will open a new way to spectrally control NFRHT, which holds great potential for improving the performance of energy systems like near-field thermophotovoltaics and thermal modulator.
The direct simulation of the dynamics of second sound in graphitic materials remains a challenging task due to lack of methodology for solving the phonon Boltzmann equation in such a stiff hydrodynamic regime. In this work, we aim to tackle this chal lenge by developing a multiscale numerical scheme for the transient phonon Boltzmann equation under Callaways dual relaxation model which captures well the collective phonon kinetics. Comparing to traditional numerical methods, the present multiscale scheme is efficient, accurate and stable in all transport regimes attributed to avoiding the use of time and spatial steps smaller than the relaxation time and mean free path of phonons. The formation, propagation and composition of ballistic pulses and second sound in graphene ribbon in two classical paradigms for experimental detection are investigated via the multiscale scheme. The second sound is declared to be mainly contributed by ZA phonon modes, whereas the ballistic pulses are mainly contributed by LA and TA phonon modes. The influence of temperature, isotope abundance and ribbon size on the second sound propagation is also explored. The speed of second sound in the observation window is found to be at most 20 percentages smaller than the theoretical value in hydrodynamic limit due to the finite umklapp, isotope and edge resistive scattering. The present study will contribute to not only the solution methodology of phonon Boltzmann equation, but also the physics of transient hydrodynamic phonon transport as guidance for future experimental detection.
We show that periodic multilayered structures allow to drastically enhance near-field radiative heat transfer between nanoparticles. In particular, when the two nanoparticles are placed on each side of the multilayered structure, at the same interpar ticle distance the resulting heat transfer is more than five orders of magnitude higher than that in the absence of the multilayered structure. This enhancement takes place in a broad range of distances and is due to the fact that the intermediate multilayered structure supports hyperbolic phonon polaritons with the key feature that the edge frequencies of the Type I and Type II Reststrahlen bands coincide with each other at a value extremely close to the particle resonance. This allow a very high-k evanescent modes resonating with the nanoparticles. Our predictions can be relevant for effective managing of energy at the nano-scale.
Metasurfaces, the two-dimensional (2D) counterpart of metamaterials, have recently attracted a great attention due to their amazing properties such as negative refraction, hyperbolic dispersion, manipulation of the evanescent spectrum. In this work, we propose a theory model for the near field radiative heat transfer (NFRHT) between two nanoparticles in the presence of an anisotropic metasurface. Specifically, we set the metasurface as an array of graphene strips (GS) since it is an ideal platform to implement any metasurface topology, ranging from isotropic to hyperbolic propagation. We show that the NFRHT between two nanoparticles can not only be significantly amplified when they are placed in proximity of the GS, but also be regulated over several orders of magnitude. In this configuration, the anisotropic surface plasmon polaritons (SPPs) supported by the GS are excited and provide a new channel for the near-field energy transport. We analyze how the conductance between two nanoparticles depends on the orientation, the structure parameters and the chemical potential of the GS, on the particle-surface or the particle-surface distances by clearly identifying the characteristics of the anisotropic SPPs such as dispersion relations, propagation length and decay length. Our findings provide a powerful way to regulate the energy transport in the particle systems, meanwhile in turn, open up a way to explore the anisotropic optical properties of the metasurface based on the measured heat transfer properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا