ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a multi-wavelength study of the IR bubble G24.136+00.436. The J=1-0 observations of $^{12}$CO, $^{13}$CO and C$^{18}$O were carried out with the Purple Mountain Observatory 13.7 m telescope. Molecular gas with a velocity of 94.8 km s$^{-1} $ is found prominently in the southeast of the bubble, shaping as a shell with a total mass of $sim2times10^{4}$ $M_{odot}$. It is likely assembled during the expansion of the bubble. The expanding shell consists of six dense cores. Their dense (a few of $10^{3}$ cm$^{-3}$) and massive (a few of $10^{3}$ $M_{odot}$) characteristics coupled with the broad linewidths ($>$ 2.5 km s$^{-1}$) suggest they are promising sites of forming high-mass stars or clusters. This could be further consolidated by the detection of compact HII regions in Cores A and E. We tentatively identified and classified 63 candidate YSOs based on the emph{Spitzer} and UKIDSS data. They are found to be dominantly distributed in regions with strong emission of molecular gas, indicative of active star formation especially in the shell. The HII region inside the bubble is mainly ionized by a $sim$O8V star(s), of the dynamical age $sim$1.6 Myr. The enhanced number of candidate YSOs and secondary star formation in the shell as well as time scales involved, indicate a possible scenario of triggering star formation, signified by the collect and collapse process.
73 - Mingzhe Li , Yifu Cai , Hong Li 2010
In this paper we study the evolution of cosmological perturbations in the presence of dynamical dark energy, and revisit the issue of dark energy perturbations. For a generally parameterized equation of state (EoS) such as w_D(z) = w_0+w_1frac{z}{1+z }, (for a single fluid or a single scalar field ) the dark energy perturbation diverges when its EoS crosses the cosmological constant boundary w_D=-1. In this paper we present a method of treating the dark energy perturbations during the crossing of the $w_D=-1$ surface by imposing matching conditions which require the induced 3-metric on the hypersurface of w_D=-1 and its extrinsic curvature to be continuous. These matching conditions have been used widely in the literature to study perturbations in various models of early universe physics, such as Inflation, the Pre-Big-Bang and Ekpyrotic scenarios, and bouncing cosmologies. In all of these cases the EoS undergoes a sudden change. Through a detailed analysis of the matching conditions, we show that delta_D and theta_D are continuous on the matching hypersurface. This justifies the method used[1-4] in the numerical calculation and data fitting for the determination of cosmological parameters. We discuss the conditions under which our analysis is applicable.
128 - Hong Li , Jie Liu , Jun-Qing Xia 2008
In this paper, we study the cosmological implications of the 100 square degree Weak Lensing survey (the CFHTLS-Wide, RCS, VIRMOS-DESCART and GaBoDS surveys). We combine these weak lensing data with the cosmic microwave background (CMB) measurements f rom the WMAP5, BOOMERanG, CBI, VSA, ACBAR, the SDSS LRG matter power spectrum and the Type Ia Supernoave (SNIa) data with the Union compilation (307 sample), using the Markov Chain Monte Carlo method to determine the cosmological parameters. Our results show that the Lambda CDM model remains a good fit to all of these data. For the dynamical dark energy model with time evolving EoS parameterized as w_{DE}(a) = w_0 + w_a (1-a), we find that the best-fit model implying the mildly preference of Quintom model whose EoS gets across the cosmological constant boundary during evolution. Regarding the total neutrino mass limit, we obtain the upper limit, sum m_{ u}< 0.471 eV (95% C.L.) within the framework of the flat Lambda CDM model. Due to the obvious degeneracies between the neutrino mass and the EoS of dark energy model, this upper limit will be relaxed by a factor of 2 in the framework of dynamical dark energy models. For the constraints on the inflation parameters, we find that the upper limit on the ratio of the tensor to scalar is r<0.35 (95% C.L.) and the inflationary models with the slope n_sgeq1 are excluded at more than 2 sigma confidence level. In this paper we pay particular attention to the contribution from the weak lensing data and find that the current weak lensing data do improve the constraints on matter density Omega_m, sigma_8, sum{m_{ u}}, and the EoS of dark energy.
In this paper we study the sensitivity of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) project to the determination of cosmological parameters, employing the Monte Carlo Markov Chains (MCMC) method. For comparison, we first analyze the constraints on cosmological parameters from current observational data, including WMAP, SDSS and SN Ia. We then simulate the 3D matter power spectrum data expected from LAMOST, together with the simulated CMB data for PLANCK and the SN Ia from 5-year Supernovae Legacy Survey (SNLS). With the simulated data, we investigate the future improvement on cosmological parameter constraints, emphasizing the role of LAMOST. Our results show the potential of LAMOST in probing for the cosmological parameters, especially in constraining the equation-of-state (EoS) of the dark energy and the neutrino mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا