ترغب بنشر مسار تعليمي؟ اضغط هنا

We report 73Ge-NMR and NQR results for ferromagnetic (FM) superconductor URhGe. The magnitude and direction of the internal field, H_int, and parameters of the electric field gradient at the Ge site were determined experimentally. Using powdered poly crystalline samples oriented by different methods, the field dependences of NMR shift and nuclear spin relaxation rates for H_0 // c (easy axis) and H_0 // b were obtained. From the NMR shifts for H_0 // b, we confirmed a gradual suppression of the Curie temperature and observed a phase separation near the spin reorientation. The observation of the phase separation gives microscopic evidence that the spin reorientation under H_0 // b is of first order at low temperatures. The nuclear spin-lattice relaxation rate 1/T_1 indicates that the magnetic fluctuations are suppressed for H_0 // c, whereas the fluctuations remain strongly for H_0 // b. The enhancements of both 1/T_1T and the nuclear spin-spin relaxation rate 1/T_2 for H_0 // b toward the spin reorientation field suggest that the field-induced superconductivity in URhGe emerges under the magnetic fluctuations along the b axis and the c axis.
Pressure-induced superconductivity was recently discovered in the binary helimagnet CrAs. We report the results of measurements of nuclear quadrupole resonance for CrAs under pressure. In the vicinity of the critical pressure P_c between the helimagn etic (HM) and paramagnetic (PM) phases, a phase separation is observed. The large internal field remaining in the phase-separated HM state indicates that the HM phase disappears through a strong first-order transition. This indicates the absence of a quantum critical point in CrAs; however, the nuclear spin-lattice relaxation rate 1/T_1 reveals that substantial magnetic fluctuations are present in the PM state. The absence of a coherence effect in 1/T_1 in the superconducting state provides evidence that CrAs is the first Cr-based unconventional superconductor.
We present NMR measurements of the layered nitride superconductor Li_xZrNCl. The nuclear spin-lattice relaxation rate, 1/T_1, shows that the coherence peak is strongly suppressed in Li_xZrNCl in contrast to conventional BCS superconductors. In the li ghtly-doped region close to the insulating state, the system shows a gap-like behavior, i.e., pseudogap, that is characterized by a reduction in the magnitude of the Knight shift and 1/T_1T. A higher superconducting (SC) transition temperature, T_c, is achieved by coexisting with the pseudogap state. These unusual behaviors, which deviate from the ordinary BCS framework, are the key ingredients to understanding the SC mechanism of Li_xZrNCl.
We report resistivity measurements of the helimagnet CrAs under pressures. The helimagnetic transition with T_N ~ 265 K at ambient pressure is completely suppressed above a critical pressure of P_c ~ 0.7 GPa, and superconductivity is observed at ~2.2 K for zero resistance, which exists in a wide pressure range extending beyond 3 GPa. Both the upper critical field H_{c2} and the coefficient A in the resistivity increase toward P_c, suggesting that the superconductivity of CrAs is mediated by electronic correlations enhanced in the vicinity of the helimagnetic phase.
We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggest ed to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
109 - Y. Tomita , H. Kotegawa , Y. Tao 2012
$^{75}$As and $^{45}$Sc NMR measurements unravel the electronic state for Fe-based superconductors with perovskite-type blocking layers Ca$_4$(Mg,Ti)$_3$Fe$_2$As$_2$O$_{8-y}$ ($T_c^{onset}=47$ K) and Ca$_5$(Sc,Ti)$_4$Fe$_2$As$_2$O$_{11-y}$ ($T_c^{ons et}=41$ K). In Ca$_5$(Sc,Ti)$_4$Fe$_2$As$_2$O$_{11-y}$, the nuclear spin relaxation rate $1/T_1$ shows pseudogap behavior below $sim80$ K, suggesting that the electronic state is similar to that of LaFeAs(O,F) system with moderate electron doping. The presence of the pseudogap behavior gives an interpretation that the hole-like band (so-called $gamma$ pocket) is located just below the Fermi level from the analogy to LaFeAs(O,F) system and the disappearance of the $gamma$ pocket yields the suppression of the low-energy spin fluctuations. On the other hand, in Ca$_4$(Mg,Ti)$_3$Fe$_2$As$_2$O$_{8-y}$ satisfying the structural optimal condition for higher $T_c$ among the perovskite systems, the extrinsic contribution, which presumably originates in the Ti moment, is observed in $1/T_1T$; however, the moderate temperature dependence of $1/T_1T$ appears by its suppression under high magnetic field. In both systems, the high $T_c$ of $sim40$ K is realized in the absence of the strong development of the low-energy spin fluctuations. The present results reveal that the structural optimization does not induce the strong development of the low-energy spin fluctuations. If we consider that superconductivity is mediated by spin fluctuations, the structural optimization is conjectured to provide a benefit to the development of the high-energy spin fluctuations irrespective to the low-energy part.
We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in th e metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.
We report $^{77}$Se-nuclear magnetic resonance (NMR) results down to sufficiently low temperatures under magnetic fields parallel to both the $ab$-plane and the c-axis in a paramagnetic/superconducting (PM/SC) phase of K$_x$Fe$_{2-y}$Se$_2$. The obse rvation of anisotropy in the orbital part of the Knight shift results in the anisotropy of its spin part increasing on approaching the transition temperature. The anisotropy of the Korringa relation suggests the presence of the weak spin fluctuations with a finite wave vector $bm{q}$, which induce the magnetic fluctuations along the ab-plane at the Se site. Such fluctuations do not correspond to the stripe $(pi,0)$ correlation of the Fe moment observed in many Fe-based superconductors, and are not contradictory to weak $(pi,pi)$ correlations. The nuclear spin-lattice relaxation rate $1/T_1$ shows a field-independent $T_1T sim const.$ behavior at low temperatures for $H parallel ab$, which is attributed to the nonzero density of states at the Fermi level and can be explained by the sign-changing order parameter even for nodeless gaps. The temperature dependence of $1/T_1$ is reproduced well by nodeless models with two isotropic gaps or a single anisotropic gap. The obtained gap magnitude in the isotropic two-gap model is comparable to those obtained in the angle-resolved photoemission spectroscopy experiments.
We report the pressure dependences of the superconducting transition temperature (T_c) in several perovskite-type Fe-based superconductors through the resistivity measurements up to ~4 GPa. In Ca_4(Mg,Ti)_3Fe_2As_2O_y with the highest T_c of 47 K in the present study, the T_c keeps almost constant up to ~1 GPa, and starts to decrease above it. From the comparison among several systems, we obtained a tendency that low T_c with the longer a-axis length at ambient pressure increases under pressure, but high T_c with the shorter a-axis length at ambient pressure hardly increases. We also report the ^75As-NMR results on Sr_2VFeAsO_3. NMR spectrum suggests that the magnetic ordering occurs at low temperatures accompanied by some inhomogeneity. In the superconducting state, we confirmed the anomaly by the occurrence of superconductivity in the nuclear spin lattice relaxation rate 1/T_1, but the spin fluctuations unrelated with the superconductivity are dominant. It is conjectured that the localized V-3d moments are magnetically ordered and their electrons do not contribute largely to the Fermi surface and the superconductivity in Sr_2VFeAsO_3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا