ترغب بنشر مسار تعليمي؟ اضغط هنا

Diamond has outstanding physical properties: the hardest known material, a wide band gap, the highest thermal conductivity, and a very high Debye temperature. In 2004, Ekimov et al. discovered that heavily boron-doped (B-doped) diamond becomes a supe rconductor around 4 K. Our group successfully controlled the boron concentration and synthesized homoepitaxially grown superconducting diamond films by a CVD method. By CVD method, we found that superconductivity appears when the boron concentration (nB) exceeds a metal-insulator transition concentration of 3.0x10^20 cm^-3 and its Tczero increases up to 7.4 K with increasing nB. We additionally elucidated that the holes formed at the valence band are responsible for the metallic states leading to superconductivity. The calculations predicted that the hole doping into the valence band induces strong attractive interaction and a rapid increase in Tc with increasing boron concentration. According to the calculations, if substitutional doped boron could be arranged periodically or the degree of disorder is reduced, a Tc of approximately 100 K could be achieved via minimal percent doping. In this work, we have successfully observed zero resistivity above 10 K and an onset of resistivity reduction at 25.2 K in heavily B-doped diamond film. However, the effective carrier concentration is similar to that of superconducting diamond with a lower Tc. We found that the carrier has a longer mean free path and lifetime than previously reported, indicating that this highest Tc diamond has better crystallinity compared to that of other superconducting diamond films. In addition, the susceptibility shows a small transition above 20 K in the high quality diamond, suggesting a signature of superconductivity above 20 K. These results strongly suggest that heavier carrier doped defect-free crystalline diamond could give rise to high Tc diamond.
We have successfully observed quantum oscillation (QO) for FeTe_{1-x}Se_{x}. QO measurements were performed using non-superconducting and superconducting thin crystals of FeTe_{0.65}Se_{0.35} fabricated by the scotch-tape method. We show that the Fer mi surfaces (FS) of the non-superconducting crystal are in good agreement with the rigid band shift model based on electron doping by excess Fe while that of the superconducting crystal is in good agreement with the calculated FS with no shift. From the FS comparison of both crystals, we demonstrate the change of the cross-sectional area of the FS, suggesting that the suppression of the FS nesting with the vector Q_{s} = (pi, pi) due to excess Fe results in the disappearance of the superconductivity.
We have fabricated thin films of FeTe$_{1-x}$Se$_x$ using a scotch-tape method. The superconductivities of the thin films are different from each other although these films were fabricated from the same bulk sample. The result clearly presents the in homogeneous superconductivity in FeTe$_{1-x}$Se$_x$. The difference comes from inhomogeneity due to the excess Fe concentration. The resistivity of a thin film with low excess Fe shows good superconductivity with the sharp superconducting-transition width and more isotropic superconductivity.
330 - H. Okazaki , T. Wakita , T. Muro 2010
We use photoemission spectroscopy to study electronic structures of pristine and K-doped solid picene. The valence band spectrum of pristine picene consists of three main features with no state at the Fermi level (EF), while that of K-doped picene ha s three structures similar to those of pristine picene with new states near EF, consistent with the semiconductor-metal transition. The K-induced change cannot be explained with a simple rigid-band model of pristine picene, but can be interpreted by molecular orbital calculations considering electron-intramolecular-vibration interaction. Excellent agreement of the K-doped spectrum with the calculations points to importance of electron-intramolecular-vibration interaction in K-doped picene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا