ترغب بنشر مسار تعليمي؟ اضغط هنا

Percolation theory is applied to the phase-transition dynamics of domain pattern formation in segregating binary Bose--Einstein condensates in quasi-two-dimensional systems. Our finite-size-scaling analysis shows that the percolation threshold of the initial domain pattern emerging from the dynamic instability is close to 0.5 for strongly repulsive condensates. The percolation probability is universally described with a scaling function when the probability is rescaled by the characteristic domain size in the dynamic scaling regime of the phase-ordering kinetics, independent of the intercomponent interaction. It is revealed that an infinite domain wall sandwiched between percolating domains in the two condensates has an noninteger fractal dimension and keeps the scaling behavior during the dynamic scaling regime. This result seems to be in contrast to the argument that the dynamic scale invariance is violated in the presence of an infinite topological defect in numerical cosmology.
Nambu-Goldstone modes in immiscible two-component Bose-Einstein condensates are studied theoretically. In a uniform system, a flat domain wall is stabilized and then the translational invariance normal to the wall is spontaneously broken in addition to the breaking of two U(1) symmetries in the presence of two complex order parameters. We clarify properties of the low-energy excitations and identify that there exist two Nambu-Goldstone modes: in-phase phonon with a linear dispersion and ripplon with a fractional dispersion. The signature of the characteristic dispersion can be verified in segregated condensates in a harmonic potential.
We theoretically study the instability of helical shear flows, in which one fluid component flows along the vortex core of the other, in phase-separated two-component Bose-Einstein condensates at zero temperature. The helical shear flows are hydrodyn amically classified into two regimes: (1) a helical vortex sheet, where the vorticity is localized on the cylindrical interface and the stability is described by an effective theory for ripple modes, and (2) a core-flow vortex with the vorticity distributed in the vicinity of the vortex core, where the instability phenomena are dominated only by the vortex-characteristic modes: Kelvin and varicose modes. The helical shear-flow instability shows remarkable competition among different types of instabilities in the crossover regime between the two regimes.
We present a combined experimental and theoretical study of the drag force acting on a high porosity aerogel immersed in liquid ${}^3$He and its effect on sound propagation. The drag force is characterized by the Knudsen number, which is defined as the ratio of the quasiparticle mean free path to the radius of an aerogel strand. Evidence of the Knudsen-hydrodynamic crossover is clearly demonstrated by a drastic change in the temperature dependence of ultrasound attenuation in 98% porosity aerogel. Our theoretical analysis shows that the frictional sound damping caused by the drag force is governed by distinct laws in the two regimes, providing excellent agreement with the experimental observation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا