ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - Hiroaki Sugiyama 2015
In this short review, we see some typical models in which light neutrino masses are generated at the loop level. These models involve new Higgs bosons whose Yukawa interactions with leptons are constrained by the neutrino oscillation data. Prediction s about flavor structures of $ell to overline{ell}_1 ell_2 ell_3$ and leptonic decays of new Higgs bosons via the constrained Yukawa interactions are briefly summarized in order to utilize such Higgs as a probe of $ u$ physics.
The doubly-charged scalar boson H^{--} is involved in several new physics models for generating neutrino masses. Depending on new physics models, H^{--} has the Yukawa interaction with a pair of left-handed charged leptons or a pair of right-handed o nes. In this talk, we see that these two Yukawa interactions can be distinguished by measuring energy distributions of charged pions produced by decays of tau leptons if pair-produced H^{++} H^{--} can decay sufficiently into four charged leptons which involve one or two tau leptons. The information on the Yukawa interaction of H^{--} will help to discriminate models in which neutrino masses are generated.
In the Higgs Triplet Model and the neutrinophilic Two-Higgs-Doublet Model the observed neutrinos obtain mass from a vacuum expectation value which is much smaller than the vacuum expectation value of the Higgs boson in the Standard Model. Both models contain a singly charged Higgs boson (H^-) whose Yukawa coupling is directly related to the neutrino mass (i.e. a neutrinophilic charged Higgs). The partial decay widths of H^- into a charged lepton and a neutrino (H^- to l^- nu) depend identically on the neutrino masses and mixings in the two models. We quantify the impact of the recent measurement of sin^2(2theta_{13}), which plays a crucial role in determining the magnitude of the branching ratio of H^- to e^- nu for the case of a normal neutrino mass ordering if the lightest neutrino mass m_0 < 10^{-3} eV. We also discuss the sizeable dependence of H^- to mu^- nu and H^- to tau^- nu on sin^2(theta_{23}), which would enable information to be obtained on sin^2(theta_{23}) and the sign of Delta m^2_{31} if these decays are measured. Such information would help neutrino oscillation experiments to determine the CP-violating phase delta.
This is a short review about relations between new scalars and mechanisms to generate neutrino masses. We investigate leptohilic scalars whose Yukawa interactions are only with leptons. We discuss possibilities that measurements of their leptonic dec ays provide information on how neutrino masses are generated and on parameters in the neutrino mass matrix (e.g. the lightest neutrino mass).
We investigate a model in which tiny neutrino masses are generated at the two-loop level by using scalar leptoquark and diquark multiplets. The diquark can be singly produced at the LHC, and it can decay into a pair of leptoquarks through the lepton number violating interaction. Subsequent decays of the two leptoquarks can provide a clear signature of the lepton number violation, namely two QCD jets and a pair of same-signed charged leptons without missing energy. We show that the signal process is not suppressed while neutrino masses are appropriately suppressed.
The Zee model generates neutrino masses at the one-loop level by adding charged SU(2)_L-singlet and extra SU(2)_L-doublet scalars to the standard model of particle physics. As the origin of the nontrivial structure of the lepton flavor mixing, we int roduce the softly broken A_4 symmetry to the Zee model. This model is compatible with the tribimaximal mixing which agrees well with neutrino oscillation measurements. Then, a sum rule m_1 e^{i alpha_12} + 2 m_2 + 3 m_3 e^{i alpha_32} = 0 is obtained and it results in Delta m^2_31 < 0 and m_3 > 1.8*10^{-2}eV. The effective mass |(M_nu)_{ee}| for the neutrinoless double beta decay is predicted as | (M_ u)_{ee} | > 1.7*10^{-2}eV. The characteristic particles in this model are SU(2)_L-singlet charged Higgs bosons s^+_alpha (alpha=xi,eta,zeta) which are made from a 3-representation of A_4. Contributions of s^+_alpha to the lepton flavor violating decays of charged leptons are almost forbidden by an approximately remaining Z_3 symmetry; only BR(tau to ebar mu mu) can be sizable by the flavor changing neutral current interaction with SU(2)_L-doublet scalars. Therefore, s^+_alpha can be easily light enough to be discovered at the LHC with satisfying current constraints. The flavor structures of BR(s^-_alpha to ell nu) are also discussed.
Doubly charged Higgs bosons (H^++) are a distinctive signature of the Higgs Triplet Model of neutrino mass generation. If H^++ is relatively light (m_{H^++} < 400GeV) it will be produced copiously at the LHC, which could enable precise measurements o f the branching ratios of the decay channels H^++ to l_i l_j. Such branching ratios are determined solely by the neutrino mass matrix which allows the model to be tested at the LHC. We quantify the dependence of the leptonic branching ratios on the absolute neutrino mass and Majorana phases, and present the permitted values for the channels ee, emu and mumu. It is shown that precise measurements of these three branching ratios are sufficient to extract information on the neutrino mass spectrum and probe the presence of CP violation from Majorana phases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا