ترغب بنشر مسار تعليمي؟ اضغط هنا

Majority of all galaxies reside in groups of less than 50 member galaxies. These groups are distributed in various large-scale environments from voids to superclusters. Evolution of galaxies is affected by the environment in which they reside. Our ai m is to study the effects that the local group scale and the supercluster scale environment have on galaxies. We use a luminosity-density field to determine density of the large-scale environment of galaxies in groups of various richness. We calculate fractions of different types of galaxies in groups with richnesses up to 50 member galaxies and in different large-scale environments from voids to superclusters. The fraction of passive elliptical galaxies rises and the fraction of star-forming spiral galaxies declines when the richness of a group of galaxies rises from two to approximately ten galaxies. On the large scale, the passive elliptical galaxies become more numerous than star-forming spirals when the environmental density grows to the density level typical for superclusters. The large-scale environment affects the level of these fractions in groups: galaxies in equally rich groups are more likely to be elliptical in supercluster environments than in lower densities. The crossing point, where the number of passive and star-forming galaxies is equal, happens in groups with lower richness in superclusters than in voids. Galaxies in low-density areas require richer groups to evolve from star-forming to passive. Groups in superclusters are on average more luminous than groups in large-scale environments with lower density. Our results suggest that the evolution of galaxies is affected by both, by the group in which the galaxy resides, and by its large-scale environment. Galaxies in lower-density regions develop later than galaxies in similar mass groups in high-density environments.
For the first time spectroscopic galaxy redshift surveys are reaching the scales where galaxies can be studied together with the nearest quasars. This gives an opportunity to study the dependence between the activity of a quasar and its environment i n a more extensive way than before. We study the spatial distribution of galaxies and groups of galaxies in the environments of low redshift quasars in the Sloan Digital Sky Survey (SDSS). Our aim is to understand how the nearby quasars are embedded in the local and global density field of galaxies and how the environment affects quasar activity. We analyse the environments of nearby quasars using number counts of galaxies. We also study the dependence of group properties to their distance to the nearest quasar. The large scale environments are studied by analysing the locations of quasars in the luminosity density field. Our study of the number counts of galaxies in quasar environments shows an underdensity of bright galaxies at a few Mpc from quasars. Also, the groups of galaxies that have a quasar closer than 2Mpc are poorer and less luminous than in average. Our analysis on the luminosity density field shows that quasars clearly avoid rich superclusters. Nearby quasars seem to be located in outskirts of superclusters or in filaments connecting them. Our results suggest that quasar evolution may be affected by density variations both on supercluster scales and in the local environment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا