ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - Heesung Shin , Jiang Zeng 2014
We consider several generalizations of the classical $gamma$-positivity of Eulerian polynomials (and their derangement analogues) using generating functions and combinatorial theory of continued fractions. For the symmetric group, we prove an expansion formula for
Let $mathcal{T}^{(p)}_n$ be the set of $p$-ary labeled trees on ${1,2,dots,n}$. A maximal decreasing subtree of an $p$-ary labeled tree is defined by the maximal $p$-ary subtree from the root with all edges being decreasing. In this paper, we study a new refinement $mathcal{T}^{(p)}_{n,k}$ of $mathcal{T}^{(p)}_n$, which is the set of $p$-ary labeled trees whose maximal decreasing subtree has $k$ vertices.
Recently, Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graph s, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph $G$ is related to the Poincare polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold $M(G)$. We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold $M(G)$ for complete multipartite graphs $G$.
Let $mathcal{O}_n$ be the set of ordered labeled trees on ${0,...,n}$. A maximal decreasing subtree of an ordered labeled tree is defined by the maximal ordered subtree from the root with all edges being decreasing. In this paper, we study a new refi nement $mathcal{O}_{n,k}$ of $mathcal{O}_n$, which is the set of ordered labeled trees whose maximal decreasing subtree has $k+1$ vertices.
We give two combinatorial proofs of Goulden and Jacksons formula for the number of minimal transitive factorizations of a permutation when the permutation has two cycles. We use the recent result of Goulden, Nica, and Oancea on the number of maximal chains of annular noncrossing partitions of type $B$.
Let $T_{n}$ be the set of rooted labeled trees on $set{0,...,n}$. A maximal decreasing subtree of a rooted labeled tree is defined by the maximal subtree from the root with all edges being decreasing. In this paper, we study a new refinement $T_{n,k} $ of $T_n$, which is the set of rooted labeled trees whose maximal decreasing subtree has $k+1$ vertices.
83 - Heesung Shin , Jiang Zeng 2010
For a labeled tree on the vertex set $set{1,2,ldots,n}$, the local direction of each edge $(i,j)$ is from $i$ to $j$ if $i<j$. For a rooted tree, there is also a natural global direction of edges towards the root. The number of edges pointing to a ve rtex is called its indegree. Thus the local (resp. global) indegree sequence $lambda = 1^{e_1}2^{e_2} ldots$ of a tree on the vertex set $set{1,2,ldots,n}$ is a partition of $n-1$. We construct a bijection from (unrooted) trees to rooted trees such that the local indegree sequence of a (unrooted) tree equals the global indegree sequence of the corresponding rooted tree. Combining with a Prufer-like code for rooted labeled trees, we obtain a bijective proof of a recent conjecture by Cotterill and also solve two open problems proposed by Du and Yin. We also prove a $q$-multisum binomial coefficient identity which confirms another conjecture of Cotterill in a very special case.
93 - Heesung Shin 2008
In 1980, G. Kreweras gave a recursive bijection between forests and parking functions. In this paper we construct a nonrecursive bijection from forests onto parking functions, which answers a question raised by R. Stanley. As a by-product, we obtain a bijective proof of Gessel and Seos formula for lucky statistic on parking functions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا