ترغب بنشر مسار تعليمي؟ اضغط هنا

We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a c oupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $beta$ is less than 1.9 $times10^7$~for $n=1$ at 95% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $varphi$ inversely proportional to $varphi^n$.
This work presents selected results from the first round of the DFG Priority Programme SPP 1491 precision experiments in particle and astroparticle physics with cold and ultra-cold neutrons.
We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the RB drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron $beta$-decay. We aim for a precision on the 10$^{-4}$ level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newtons gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of the Earth. Resonant transitions between several of the lowest quantum sta tes are observed for the first time. These measurements demonstrate, that Newtons inverse square law of Gravity is understood at micron distances on an energy scale of~$10^{-14}$~eV. At this level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant~$beta > 5.8times10^8$ at~95% confidence level~(C.L.), and an attractive (repulsive) dark matter axion-like spin-mass coupling is excluded for the coupling strength $g_sg_p > 3.7times10^{-16}$~($5.3times10^{-16}$)~at a Yukawa length of~$lambda = 20$~{textmu}m~(95% (C.L.).
84 - X. Wang , G. Konrad , 2012
We propose a new type of momentum spectrometer, which uses the RxB drift effect to disperse the charged particles in a uniformly curved magnetic field. This kind of RxB spectrometer is designed for the momentum analyses of the decay electrons and pro tons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the RxB spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the RxB spectrometer is especially ideal for the measurements of particles with low momenta and relative large incident angles. We present a design of the RxB spectrometer, which can be used in PERC. The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm.
The evidence for the observation of the Higgs spin-0-boson as a manifestation of a scalar field provides the missing corner stone for the standard model of particles (SM). However, the SM fails to explain the non-visible but gravitationally active pa rt of the universe. Its nature is unknown but the confirmation of a scalar Higgs is giving a boost to scalar-field-theories. So far gravity experiments and observations performed at different distances find no deviation from Newtons gravity law. Therefore dark energy must possess a screening mechanism which suppresses the scalar-mediated fifth force. Our line of attack is a novel gravity experiment with neutrons based on a quantum interference technique. The spectroscopic measurement of quantum states on resonances with an external coupling makes this a powerful search for dark matter and dark energy contributions in the universe. Quantum states in the gravity potential are intimately related to other scalar field or spin-0-bosons if they exist. If the reason is that some undiscovered particle interact with a neutron, this results in a measurable energy shift of quantum states in the gravity potential, because for neutrons the screening effect is absent. We use Gravity Resonance Spectroscopy to measure the energy splitting at the highest level of precision, providing a constraint on any possible new interaction. We obtain a sensitivity of 10^-14 eV. We set an experimental limit on any fifth force, in particular on parameter beta<2x10^9 at n=3 for the scalar chameleon field, which is improved by a factor of 100 compared to our previous experiment and five orders of magnitude better than from precision tests of atomic spectra. The pseudoscalar axion coupling is constrained to gsgp/hbar c<3x10^-16 at 20mu m, which is an improvement by a factor of 30. These results indicate that gravity is understood at this improved level of precision.
We report on a new measurement of the neutron beta-asymmetry parameter $A$ with the instrument perkeo. Main advancements are the high neutron polarization of $P = 99.7(1)%$ from a novel arrangement of super mirror polarizers and reduced background fr om improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result $A_0 = -0.11996(58)$, we derive the ratio of the axial-vector to the vector coupling constant $lambda = g_mathrm{A}/g_mathrm{V} = -1.2767(16)$
69 - H. Abele , T. Jenke , H. Leeb 2009
We propose to apply Ramseys method of separated oscillating fields to the spectroscopy of the quantum states in the gravity potential above a vertical mirror. This method allows a precise measurement of quantum mechanical phaseshifts of a Schrodinger wave packet bouncing off a hard surface in the gravitational field of the earth. Measurements with ultra-cold neutrons will offer a sensitivity to Newtons law or hypothetical short-ranged interactions, which is about 21 orders of magnitude below the energy scale of electromagnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا