ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in cite{Chr-NC-erratum} is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is over damped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.
63 - Hans Christianson 2013
We consider quasimodes on planar domains with a partially rectangular boundary. We prove that for any $epsilon_0>0$, an $O(lambda^{-epsilon_0})$ quasimode must have $L^2$ mass in the wings bounded below by $lambda^{-2-delta}$ for any $delta>0$. The p roof uses the authors recent work on 0-Gevrey smooth domains to approximate quasimodes on $C^{1,1}$ domains. There is an improvement for $C^{2,alpha}$ domains.
83 - Hans Christianson 2013
We prove a strong conditional unique continuation estimate for irreducible quasimodes in rotationally invariant neighbourhoods on compact surfaces of revolution. The estimate states that Laplace quasimodes which cannot be decomposed as a sum of other quasimodes have $L^2$ mass bounded below by $C_epsilon lambda^{-1 - epsilon}$ for any $epsilon>0$ on any open rotationally invariant neighbourhood which meets the semiclassical wavefront set of the quasimode. For an analytic manifold, we conclude the same estimate with a lower bound of $C_delta lambda^{-1 + delta}$ for some fixed $delta>0$.
99 - Hans Christianson 2013
We consider the resolvent on asymptotically Euclidean warped product manifolds in an appropriate 0-Gevrey class, with trapped sets consisting of only finitely many components. We prove that the high-frequency resolvent is either bounded by $C_epsilon |lambda|^epsilon$ for any $epsilon>0$, or blows up faster than any polynomial (at least along a subsequence). A stronger result holds if the manifold is analytic. The method of proof is to exploit the warped product structure to separate variables, obtaining a one-dimensional semiclassical Schrodinger operator. We then classify the microlocal resolvent behaviour associated to every possible type of critical value of the potential, and translate this into the associated resolvent estimates. Weakly stable trapping admits highly concentrated quasimodes and fast growth of the resolvent. Conversely, using a delicate inhomogeneous blowup procedure loosely based on the classical positive commutator argument, we show that any weakly unstable trapping forces at least some spreading of quasimodes. As a first application, we conclude that either there is a resonance free region of size $| Im lambda | leq C_epsilon | Re lambda |^{-1-epsilon}$ for any $epsilon>0$, or there is a sequence of resonances converging to the real axis faster than any polynomial. Again, a stronger result holds if the manifold is analytic. As a second application, we prove a spreading result for weak quasimodes in partially rectangular billiards.
We study the problem of estimating the $L^2$ norm of Laplace eigenfunctions on a compact Riemannian manifold $M$ when restricted to a hypersurface $H$. We prove mass estimates for the restrictions of eigenfunctions $phi_h$, $(h^2 Delta - 1)phi_h = 0$ , to $H$ in the region exterior to the coball bundle of $H$, on $h^{delta}$-scales ($0leq delta < 2/3$). We use this estimate to obtain an $O(1)$ $L^2$-restriction bound for the Neumann data along $H.$ The estimate also applies to eigenfunctions of semiclassical Schrodinger operators.
We consider a family of spherically symmetric, asymptotically Euclidean manifolds with two trapped sets, one which is unstable and one which is semi-stable. The phase space structure is that of an inflection transmission set. We prove a sharp local s moothing estimate for the linear Schrodinger equation with a loss which depends on how flat the manifold is near each of the trapped sets. The result interpolates between the family of similar estimates in cite{ChWu-lsm}. As a consequence of the techniques of proof, we also show a sharp high energy resolvent estimate with a polynomial loss depending on how flat the manifold is near each of the trapped sets.
In this paper we show how to obtain decay estimates for the damped wave equation on a compact manifold without geometric control via knowledge of the dynamics near the un-damped set. We show that if replacing the damping term with a higher-order emph {complex absorbing potential} gives an operator enjoying polynomial resolvent bounds on the real axis, then the resolvent associated to our damped problem enjoys bounds of the same order. It is known that the necessary estimates with complex absorbing potential can also be obtained via gluing from estimates for corresponding non-compact models.
We prove a quantum ergodic restriction theorem for the Cauchy data of a sequence of quantum ergodic eigenfunctions on a hypersurface $H$ of a Riemannian manifold $(M, g)$. The technique of proof is to use a Rellich type identity to relate quantum erg odicity of Cauchy data on $H$ to quantum ergodicity of eigenfunctions on the global manifold $M$. This has the interesting consequence that if the eigenfunctions are quantum unique ergodic on the global manifold $M$, then the Cauchy data is automatically quantum unique ergodic on $H$ with respect to operators whose symbols vanish to order one on the glancing set of unit tangential directions to $H$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا