ترغب بنشر مسار تعليمي؟ اضغط هنا

Clouds have an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a nu mber of hot Jupiters. In order to better characterise planetary atmospheres we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resultant transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.
We present Hubble Space Telescope near-infrared transmission spectroscopy of the transiting hot-Jupiter HAT-P-1b. We observed one transit with Wide Field Camera 3 using the G141 low-resolution grism to cover the wavelength range 1.087- 1.678 {mu}m. T hese time series observations were taken with the newly available spatial scan mode that increases the duty cycle by nearly a factor of two, thus improving the resulting photometric precision of the data. We measure a planet-to-star radius ratio of Rp/R*=0.11709+/-0.00038 in the white light curve with the centre of transit occurring at 2456114.345+/-0.000133 (JD). We achieve S/N levels per exposure of 1840 (0.061%) at a resolution of {Deltalambda}=19.2nm (R~70) in the 1.1173 - 1.6549{mu}m spectral region, providing the precision necessary to probe the transmission spectrum of the planet at close to the resolution limit of the instrument. We compute the transmission spectrum using both single target and differential photometry with similar results. The resultant transmission spectrum shows a significant absorption above the 5-{sigma} level matching the 1.4{mu}m water absorption band. In solar composition models, the water absorption is sensitive to the ~1 mbar pressure levels at the terminator. The detected absorption agrees with that predicted by an 1000 K isothermal model, as well as with that predicted by a planetary-averaged temperature model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا