ترغب بنشر مسار تعليمي؟ اضغط هنا

We use point contact spectroscopy to probe the superconducting and normal state properties of the iron-based superconductor $rm{NaFe_{1-textit{x}}Co_{textit{x}}As}$ with $rm{textit{x} = 0, 0.02, 0.06}$. Andreev spectra corresponding to multiple super conducting gaps are detected in the superconducting phase. For $rm{textit{x} = 0.02}$, a broad conductance enhancement around zero bias voltage is detected in both the normal and the superconducting phase. Such a feature is not present in the $rm{textit{x} = 0.06}$ samples. We suspect that this enhancement is caused by orbital fluctuations, as previously detected in underdoped $rm{Ba(Fe_{1-textit{x}}Co_textit{x})_2As_2}$ (Phys. Rev. B 85, 214515 (2012)). Occasionally, the superconducting phase shows a distinct asymmetric conductance feature instead of Andreev reflection. We discuss the possible origins of this feature. NaFeAs (the parent compound) grown by two different techniques is probed. Melt-grown NaFeAs shows a normal state conductance enhancement. On the other hand, at low temperatures, flux-grown NaFeAs shows a sharp dip in the conductance at zero bias voltage. The compounds are very reactive in air and the different spectra are likely a reflection of their different oxidation and purity levels.
We use point contact spectroscopy (PCS) to probe the superconducting properties of electron doped $rm{Ba(Fe_{1-x}Co_x)_2As_2}$ ($rm{x = 0.05, 0.055, 0.07, 0.08}$) and hole doped $rm{Ba_{0.8}K_{0.2}Fe_2As_2}$. PCS directly probes the low energy densit y of states via Andreev reflection, revealing two distinct superconducting gaps in both compound families. Apart from the electron underdoped $rm{Ba(Fe_{1-x}Co_{x})_2As_2}$, the excess current due to Andreev reflection for the compounds follows the typical BCS temperature dependence. For underdoped $rm{Ba(Fe_{1-x}Co_{x})_2As_2}$, the temperature dependence of the excess current deviates from that of BCS, developing a tail at higher temperatures and surviving above bulk $T_c$. Possible explanations for this anomalous behavior are explored.
We use point contact spectroscopy to probe $rm{AEFe_2As_2}$ ($rm{AE=Ca, Sr, Ba}$) and $rm{Fe_{1+y}Te}$. For $rm{AE=Sr, Ba}$ we detect orbital fluctuations above $T_S$ while for AE=Ca these fluctuations start below $T_S$. Co doping preserves the orbit al fluctuations while K doping suppresses it. The fluctuations are only seen at those dopings and temperatures where an in-plane resistive anisotropy is known to exist. We predict an in-plane resistive anisotropy of $rm{Fe_{1+y}Te}$ above $T_S$. Our data are examined in light of the recent work by W.-C. Lee and P. Phillips (arXiv:1110.5917v2). We also study how joule heating in the PCS junctions impacts the spectra. Spectroscopic information is only obtained from those PCS junctions that are free of heating effects while those PCS junctions that are in the thermal regime display bulk resistivity phenomenon.
Point contact spectroscopy reveals a gap-like feature above the magnetic and structural transition temperatures for underdoped $Ba(Fe_{1-x}Co_x)_2As_2$, $SrFe_2As_2$ and $Fe_{1+y}Te$. The conductance spectrum starts showing an enhancement at temperat ures as high as 177 K for $BaFe_2As_2$ ($T_N$ $sim$ 132 K) and 250 K for $SrFe_2As_2$ ($T_N$ $sim$ 192 K). Possible origins for this enhancement are discussed in light of recent experimental claims of nematicity in these materials. We construct a modified phase diagram for Co-doped Ba122 showing a gap-like feature existing above $T_N$ and $T_S$ for the underdoped regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا