ترغب بنشر مسار تعليمي؟ اضغط هنا

The increasing generation and collection of personal data has created a complex ecosystem, often collaborative but sometimes combative, around companies and individuals engaging in the use of these data. We propose that the interactions between these agents warrants a new topic of study: Human-Data Interaction (HDI). In this paper we discuss how HDI sits at the intersection of various disciplines, including computer science, statistics, sociology, psychology and behavioural economics. We expose the challenges that HDI raises, organised into three core themes of legibility, agency and negotiability, and we present the HDI agenda to open up a dialogue amongst interested parties in the personal and big data ecosystems.
Recent measurement studies show that there are massively distributed hosting and computing infrastructures deployed in the Internet. Such infrastructures include large data centers and organizations computing clusters. When idle, these resources can readily serve local users. Such users can be smartphone or tablet users wishing to access services such as remote desktop or CPU/bandwidth intensive activities. Particularly, when they are likely to have high latency to access, or may have no access at all to, centralized cloud providers. Today, however, there is no global marketplace where sellers and buyers of available resources can trade. The recently introduced marketplaces of Amazon and other cloud infrastructures are limited by the network footprint of their own infrastructures and availability of such services in the target country and region. In this article we discuss the potentials for a federated cloud marketplace where sellers and buyers of a number of resources, including storage, computing, and network bandwidth, can freely trade. This ecosystem can be regulated through brokers who act as service level monitors and auctioneers. We conclude by discussing the challenges and opportunities in this space.
A problem which has recently attracted research attention is that of estimating the distribution of flow sizes in internet traffic. On high traffic links it is sometimes impossible to record every packet. Researchers have approached the problem of es timating flow lengths from sampled packet data in two separate ways. Firstly, different sampling methodologies can be tried to more accurately measure the desired system parameters. One such method is the sample-and-hold method where, if a packet is sampled, all subsequent packets in that flow are sampled. Secondly, statistical methods can be used to ``invert the sampled data and produce an estimate of flow lengths from a sample. In this paper we propose, implement and test two variants on the sample-and-hold method. In addition we show how the sample-and-hold method can be inverted to get an estimation of the genuine distribution of flow sizes. Experiments are carried out on real network traces to compare standard packet sampling with three variants of sample-and-hold. The methods are compared for their ability to reconstruct the genuine distribution of flow sizes in the traffic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا