ترغب بنشر مسار تعليمي؟ اضغط هنا

For many applications, it is important to catch collections of autonomously navigating microbes and man-made microswimmers in a controlled way. Here we propose an efficient trap to collectively capture self-propelled colloidal rods. By means of compu ter simulation in two dimensions, we show that a static chevron-shaped wall represents an optimal boundary for a trapping device. Its catching efficiency can be tuned by varying the opening angle of the trap. For increasing angles, there is a sequence of three emergent states corresponding to partial, complete, and no trapping. A trapping `phase diagram maps out the trap conditions under which the capture of self-propelled particles at a given density is rendered optimal.
169 - H. H. Wensink , H. Lowen , M. Rex 2007
Using extensive Brownian dynamics computer simulations, the long-time self-diffusion coefficient is calculated for Gaussian-core particles as a function of the number density. Both spherical and rod-like particles interacting via Gaussian segments ar $ For increasing concentration we find that the translational self-diffusion behaves non-monotonically reflecting the structural reentrance effect in the equilibrium phase diagram. Both in the limits of zero and infinite concentration, it approaches its short-time value. The microscopic Medina-Noyola theory qualitatively accounts for the translational long-time diffusion. The long-time orientational diffusion coefficient for Gaussian rods, on the other hand, remains very close to its short-time counterpart for any density. Some implications of the weak translation-rotation coupling for ultrasoft rods are discussed.
We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا