ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove unique continuation principles for solutions of evolution Schrodinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extends to a large class of semi-linear Schrodinger equation.
In this work we shall review some of our recent results concerning unique continuation properties of solutions of Schrodinger equations. In this equations we include linear ones with a time depending potential and semi-linear ones.
In this work we continue our study initiated in cite{GFGP} on the uniqueness properties of real solutions to the IVP associated to the Benjamin-Ono (BO) equation. In particular, we shall show that the uniqueness results established in cite{GFGP} do n ot extend to any pair of non-vanishing solutions of the BO equation. Also, we shall prove that the uniqueness result established in cite{GFGP} under a hypothesis involving information of the solution at three different times can not be relaxed to two different times.
We study the existence and stability of the standing waves for the periodic cubic nonlinear Schrodinger equation with a point defect determined by a periodic Dirac distribution at the origin. This equation admits a smooth curve of positive periodic s olutions in the form of standing waves with a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and continuation argument, we obtain that in the case of an attractive defect the standing wave solutions are stable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even functions of $H^1_{per}$ and unstable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself.
We prove unique continuation properties for solutions of the evolution Schrodinger equation with time dependent potentials. As an application of our method we also obtain results concerning the possible concentration profiles of blow up solutions and the possible profiles of the traveling waves solutions of semi-linear Schrodinger equations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا