ترغب بنشر مسار تعليمي؟ اضغط هنا

We report new observations of the Galactic Center source G2 from the W. M. Keck Observatory. G2 is a dusty red object associated with gas that shows tidal interactions as it nears closest approach with the Galaxys central black hole. Our observations , conducted as G2 passed through periapse, were designed to test the proposal that G2 is a 3 earth mass gas cloud. Such a cloud should be tidally disrupted during periapse passage. The data were obtained using the Keck II laser guide star adaptive optics system (LGSAO) and the facility near-infrared camera (NIRC2) through the K [2.1 $mu$m] and L [3.8 $mu$m] broadband filters. Several results emerge from these observations: 1) G2 has survived its closest approach to the black hole as a compact, unresolved source at L; 2) G2s L brightness measurements are consistent with those over the last decade; 3) G2s motion continues to be consistent with a Keplerian model. These results rule out G2 as a pure gas cloud and imply that G2 has a central star. This star has a luminosity of $sim$30 $L_{odot} $ and is surrounded by a large ($sim$2.6 AU) optically thick dust shell. The differences between the L and Br-$gamma$ observations can be understood with a model in which L and Br-$gamma$ emission arises primarily from internal and external heating, respectively. We suggest that G2 is a binary star merger product and will ultimately appear similar to the B-stars that are tightly clustered around the black hole (the so-called S-star cluster).
324 - K. Phifer , T. Do , L. Meyer 2013
We present new observations and analysis of G2 - the intriguing red emission-line object which is quickly approaching the Galaxys central black hole. The observations were obtained with the laser guide star adaptive optics systems on the W. M. Keck I and II telescopes and include spectroscopy (R ~ 3600) centered on the Hydrogen Br-gamma line as well as K (2.1 micrometer) and L (3.8 micrometer) imaging. Analysis of these observations shows the Br-gamma line emission has a positional offset from the L continuum. This offset is likely due to background source confusion at L. We therefore present the first orbital solution derived from Br-gamma line astrometry, which when coupled with radial velocity measurements, results in a later time of closest approach (2014.21 +/- 0.14), closer periastron (130 AU, 1900Rs), and higher eccentricity (0.9814 +/- 0.0060) compared to a solution using L astrometry. The new orbit casts doubt on previous associations of G2 and a low surface brightness tail. It is shown that G2 has no K counterpart down to K ~ 20 mag. G2s L continuum and the Br-gamma line-emission is unresolved in almost all epochs; however it is marginally extended in our highest quality Br-gamma data set from 2006 and exhibits a clear velocity gradient at that time. While the observations altogether suggest that G2 has a gaseous component which is tidally interacting with the central black hole, there is likely a central star providing the self-gravity necessary to sustain the compact nature of this object.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا