ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss various methods to obtain the resolution volume for neutron scattering experiments, in order to perform absolute normalization on inelastic magnetic neutron scattering data. Examples from previous experiments are given. We also try to prov ide clear definitions of a number of physical quantities which are commonly used to describe neutron magnetic scattering results, including the dynamic spin correlation function and the imaginary part of the dynamic susceptibility. Formulas that can be used for general purposes are provided and the advantages of the different normalization processes are discussed.
Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic s pectral weight at the superconducting transition temperature, Tc, for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe1-x (Ni/Cu)x Te0.5 Se0.5, that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T >> Tc to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperature up to ~3Tc. If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to Tc demonstrates that strong interactions are involved.
86 - Guangyong Xu 2009
Neutron and x-ray scattering studies on relaxor ferroelectric systems Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$ (PZN), Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$ (PMN), and their solid solutions with PbTiO$_3$ (PT) have shown that inhomogeneities and disorder play important roles in the materials properties. Although a long-range polar order can be established at low temperature - sometimes with the help of an external electric field; short-range local structures called the ``polar nano-regions (PNR) still persist. Both the bulk structure and the PNR have been studied in details. The coexistence and competition of long- and short-range polar orders and how they affect the structural and dynamical properties of relaxor materials are discussed.
Using neutron diffraction, we have studied the magnetic field effect on charge structures in the charge-ordered multiferroic material LuFe$_2$O$_4$. An external magnetic field is able to change the magnitude and correlation lengths of the charge vale nce order even before the magnetic order sets in. This affects the dielectric and ferroelectric properties of the material and induces a giant magneto-electric effect. Our results suggest that the magneto-electric coupling in LuFe$_2$O$_4$ is likely due to magnetic field effect on local spins, in clear contrast to the case in most other known multiferroic systems where the bulk magnetic order is important.
Local inhomogeneities known as polar nanoregions (PNR) play a key role in governing the dielectric properties of relaxor ferroelectrics - a special class of material that exhibits an enormous electromechanical response and is easily polarized with an external field. Using neutron inelastic scattering methods, we show that the PNR can also significantly affect the structural properties of the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 (PZN-4.5%PT). A strong interaction is found between the PNR and the propagation of sound waves, i.e. acoustic phonons, the visibility of which can be enhanced with an external electric field. A comparison between acoustic phonons propagating along different directions reveals a large asymmetry in the lattice dynamics that is induced by the PNR. We suggest that a phase instability induced by this PNR-phonon interaction may contribute to the ultrahigh piezoelectric response of this and related relaxor ferroelectric materials. Our results also naturally explain the emergence of the various observed monoclinic phases in these systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا