ترغب بنشر مسار تعليمي؟ اضغط هنا

54 - G. Rauw , A. Herve , Y. Naze 2015
Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, the stars of the Oef class have been suggested to feature large-scale structures in the ir wind. High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably-single O-type stars can help us understand the physics of their stellar winds. We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6Ief star lambda Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He II 4686 and H-alpha emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of lambda Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. During our observing campaign, the He II 4686 line varies on a timescale of ~18 hours. On the contrary, the H-alpha line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on time-scales of days and could in fact be modulated by the same 4.1 days period as H-alpha, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2R* above the photosphere.
122 - G. Rauw , T. Morel , Y. Naze 2015
The Oe stars HD45314 and HD60848 have recently been found to exhibit very different X-ray properties: whilst HD60848 has an X-ray spectrum and emission level typical of most OB stars, HD45314 features a much harder and brighter X-ray emission, making it a so-called gamma Cas analogue. Monitoring the optical spectra could provide hints towards the origin of these very different behaviours. We analyse a large set of spectroscopic observations of HD45314 and HD60848, extending over 20 years. We further attempt to fit the H-alpha line profiles of both stars with a simple model of emission line formation in a Keplerian disk. Strong variations in the strengths of the H-alpha, H-beta, and He I 5876 emission lines are observed for both stars. In the case of HD60848, we find a time lag between the variations in the equivalent widths of these lines. The emission lines are double peaked with nearly identical strengths of the violet and red peaks. The H-alpha profile of this star can be successfully reproduced by our model of a disk seen under an inclination of 30 degrees. In the case of HD45314, the emission lines are highly asymmetric and display strong line profile variations. We find a major change in behaviour between the 2002 outburst and the one observed in 2013. This concerns both the relationship between the equivalent widths of the various lines and their morphologies at maximum strength (double-peaked in 2002 versus single-peaked in 2013). Our simple disk model fails to reproduce the observed H-alpha line profiles of HD45314. Our results further support the interpretation that Oe stars do have decretion disks similar to those of Be stars. Whilst the emission lines of HD60848 are explained by a disk with a Keplerian velocity field, the disk of HD45314 seems to have a significantly more complex velocity field that could be related to the phenomenon that produces its peculiar X-ray emission.
121 - G. Rauw , Y. Naze , N.J. Wright 2014
We report on the analysis of the Chandra-ACIS data of O, B and WR stars in the young association Cyg OB2. X-ray spectra of 49 O-stars, 54 B-stars and 3 WR-stars are analyzed and for the brighter sources, the epoch dependence of the X-ray fluxes is in vestigated. The O-stars in Cyg,OB2 follow a well-defined scaling relation between their X-ray and bolometric luminosities: log(Lx/Lbol) = -7.2 +/- 0.2. This relation is in excellent agreement with the one previously derived for the Carina OB1 association. Except for the brightest O-star binaries, there is no general X-ray overluminosity due to colliding winds in O-star binaries. Roughly half of the known B-stars in the surveyed field are detected, but they fail to display a clear relationship between Lx and Lbol. Out of the three WR stars in Cyg OB2, probably only WR144 is itself responsible for the observed level of X-ray emission, at a very low log(Lx/Lbol) = -8.8 +/- 0.2. The X-ray emission of the other two WR-stars (WR145 and 146) is most probably due to their O-type companion along with a moderate contribution from a wind-wind interaction zone.
96 - Gregor Rauw 2014
Massive stars feature highly energetic stellar winds that interact whenever two such stars are bound in a binary system. The signatures of these interactions are nowadays found over a wide range of wavelengths, including the radio domain, the optical band, as well as X-rays and even gamma-rays. A proper understanding of these effects is thus important to derive the fundamental parameters of the components of massive binaries from spectroscopic and photometric observations.
We present the analysis of an XMM-Newton observation of the M17 nebula. The X-ray point source population consists of massive O-type stars and a population of probable low-mass pre-main sequence stars. CEN1a,b and OI352, the X-ray brightest O-type st ars in M17, display hard spectra (kT of 3.8 and 2.6 keV) consistent with a colliding wind origin in binary/multiple systems. We show that the strong interstellar reddening towards the O-type stars of M17 yields huge uncertainties on their Lx/Lbol values. The low-mass pre-main sequence stars exhibit hard spectra resulting from a combination of high plasma temperatures and very large interstellar absorption. We find evidence for considerable long term (months to years) variability of these sources. M17 is one of the few star formation complexes in our Galaxy producing diffuse X-ray emission. We analyze the spectrum of this emission and compare it with previous studies. Finally, we discuss the Optical Monitor UV data obtained simultaneously with the X-ray images. We find very little correspondence between the UV and X-ray sources, indicating that the majority of the UV sources are foreground stars, whilst the bulk of the X-ray sources are deeply embedded in the M17 complex.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا