ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. We argue that this new m ethod may become feasible at flavor factories, resulting in an alternative determination potentially competitive with the accuracy of the present results obtained with the dispersive approach via time-like data.
There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy bet ween experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
We have measured the ratio $sigma(e^+e^-rightarrowpi^+pi^-gamma)/sigma(e^+e^-rightarrow mu^+mu^-gamma)$, with the KLOE detector at DA$Phi$NE for a total integrated luminosity of $sim$ 240 pb$^{-1}$. From this ratio we obtain the cross section $sigma( e^+e^-rightarrowpi^+pi^-)$. From the cross section we determine the pion form factor $|F_pi|^2$ and the two-pion contribution to the muon anomaly $a_mu$ for $0.592<M_{pipi}<0.975$ GeV, $Delta^{pipi} a_mu$= $({rm 385.1pm1.1_{stat}pm2.7_{sys+theo}})times10^{-10}$. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.
74 - D. Babusci , C. Bini , F. Bossi 2010
This document reviews the physics program of the KLOE-2 detector at DA$Phi$NE upgraded in energy and provides a simple solution to run the collider above the $phi$-peak (up to 2, possibly 2.5 GeV). It is shown how a precise measurement of the multiha dronic cross section in the energy region up to 2 (possibly 2.5) GeV would have a major impact on the tests of the Standard Model through a precise determination of the anomalous magnetic moment of the muon and the effective fine-structure constant at the $M_Z$ scale. With a luminosity of about $10^{32}$cm$^{-2}$s$^{-1}$, DA$Phi$NE upgraded in energy can perform a scan in the region from 1 to 2.5 GeV in one year by collecting an integrated luminosity of 20 pb$^{-1}$ (corresponding to a few days of data taking) for single point, assuming an energy step of 25 MeV. A few years of data taking in this region would provide important tests of QCD and effective theories by $gammagamma$ physics with open thresholds for pseudo-scalar (like the $eta$), scalar ($f_0,f_0$, etc...) and axial-vector ($a_1$, etc...) mesons; vector-mesons spectroscopy and baryon form factors; tests of CVC and searches for exotics. In the final part of the document a technical solution for the energy upgrade of DA$Phi$NE is proposed.
52 - G.Venanzoni 2010
In a few months the KLOE-2 detector is expected to start data taking at the upgraded DA$rm{Phi}$NE $phi$-factory of INFN Laboratori Nazionali di Frascati. It aims to collect 25 fb$^{-1}$ at the $phi(1020)$ peak, and about 5 fb$^{-1}$ in the energy re gion between 1 and 2.5 GeV. We review the status and physics program of the project
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا