ترغب بنشر مسار تعليمي؟ اضغط هنا

As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist p airs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this superactivation phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.
303 - Graeme Smith , John Smolin 2009
We study the power of quantum channels with little or no capacity for private communication. Because privacy is a necessary condition for quantum communication, one might expect that such channels would be of little use for transmitting quantum state s. Nevertheless, we find strong evidence that there are pairs of such channels that, when used together, can transmit far more quantum information than the sum of their individual private capacities. Because quantum transmissions are necessarily private, this would imply a large violation of additivity for the private capacity. Specifically, we present channels which display either (1) A large joint quantum capacity but very small individual private capacities or (2) a severe violation of additivity for the Holevo information.
85 - Graeme Smith , Jon Yard 2009
Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We sh ow theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channels ability for transmitting quantum information.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا