ترغب بنشر مسار تعليمي؟ اضغط هنا

New spectroscopic observations of the LBV/WR multiple system HD5980 in the Small Magellanic Cloud are used to address the question of the masses and evolutionary status of the two very luminous stars in the 19.3d eclipsing binary system. Two distinct components of the N V 4944 A line are detected in emission and their radial velocity variations are used to derive masses of 61 and 66 Mo, under the assumption that binary interaction effects on this atomic transition are negligible. We propose that this binary system is the product of quasi-chemically homogeneous evolution with little or no mass transfer. Thus, both of these binary stars may be candidates for gamma-ray burst progenitors or even pair instability supernovae. Analysis of the photospheric absorption lines belonging to the third-light object in the system confirm that it consists of an O-type star in a 96.56d eccentric orbit (e=0.82) around an unseen companion. The 5:1 period ratio and high eccentricities of the two binaries suggest that they may constitute a hierarchical quadruple system.
We present the results of optical wavelength observations of the unusual SMC eclipsing binary system HD 5980 obtained in 1999 and 2004--2005. Radial velocity curves for the erupting LBV/WR object (star A) and its close WR-like companion (star B) are obtained by deblending the variable emission-line profiles of N IV and N V lines under the simplistic assumption that these lines originate primarily in the winds of star A and star B. The derived masses M_A=58--79 Mo and M_B=51--67 Mo, are more consistent with the stars location near the top of the HRD than previous estimates. The presence of a wind-wind interaction region is inferred from the orbital phase-dependent behavior of He I P Cygni absorption components. The emission-line intensities continued with the declining trend previously seen in UV spectra. The behavior of the photospheric absorption lines is consistent with the results of Schweickhardt (2002) who concludes that the third object in the combined spectrum, star C, is also a binary system with P(starC)~96.5 days, e=0.83. The data used in this paper will be made publicly available for further analysis.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا