ترغب بنشر مسار تعليمي؟ اضغط هنا

The isoscalar monopole excitation of 4He is studied within a few-body ab initio approach. We consider the transition density to the low-lying and narrow 0+ resonance, as well as various sum rules and the strength energy distribution itself at differe nt momentum transfers q. Realistic nuclear forces of chiral and phenomenological nature are employed. Various indications for a collective breathing mode are found: i) the specific shape of the transition density, ii) the high degree of exhaustion of the non-energy-weighted sum rule at low q and iii) the complete dominance of the resonance peak in the excitation spectrum. For the incompressibility K of the alpha-particle values between 20 and 30 MeV are found.
Here we summarize how the LIT and CC methods can be coupled, in order to allow for ab initio calculations of reactions in medium mass nuclei. Results on 16O are reviewed and preliminary calculations on 40Ca are presented.
A different formulation of the effective interaction hyperspherical harmonics (EIHH) method, suitable for non-local potentials, is presented. The EIHH method for local interactions is first shortly reviewed to point out the problems of an extension t o non-local potentials. A viable solution is proposed and, as an application, results on the ground-state properties of 4- and 6-nucleon systems are presented. One finds a substantial acceleration in the convergence rate of the hyperspherical harmonics series. Perspectives for an application to scattering cross sections, via the Lorentz transform method are discussed.
Integral transform approaches are numerous in many fields of physics, but in most cases limited to the use of the Laplace kernel. However, it is well known that the inversion of the Laplace transform is very problematic, so that the function related to the physical observable is in most cases unaccessible. The great advantage of kernels of bell-shaped form has been demonstrated in few-body nuclear systems. In fact the use of the Lorentz kernel has allowed to overcome the stumbling block of the ab initio description of reactions to the full continuum of systems of more than three particles. The problem of finding kernels of similar form, applicable to many-body problems deserves particular attention. If this search were successful the integral transform approach might represent the only viable ab initio access to many observables that are not calculable directly.
In this series of lectures it is illustrated how one can study the strong dynamics of nuclei by means of the electroweak probe. In particular, the most important steps to derive the cross sections in first order perturbation theory are reviewed. In t he derivation the focus is put on the main ingredients entering the hadronic part (response functions), i.e. the initial and final states of the system and the operators relevant for the reaction. Emphasis is put on the electromagnetic interaction with few-nucleon systems. The Lorentz integral transform method to calculate the response functions ab initio is described. A few examples of the comparison between theoretical and experimental results are shown. The dependence of the response functions on the nuclear interaction and in particular on three-body forces is emphasized.
The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obt ained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا