ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent calculations have shown that the UV bump at about 217.5 nm in the extinction curve can be explained by a complex mixture of PAHs in several charge states. Other studies proposed that the carriers are a restricted population made of neutral and singly-ionised dehydrogenated coronene molecules (C24Hn, n less than 3), in line with models of the hydrogenation state of interstellar PAHs predicting that medium-sized species are highly dehydrogenated. To assess the observational consequences of the latter hypothesis we have undertaken a systematic study of the electronic spectra of dehydrogenated PAHs. We use our first results to see whether such spectra show strong general trends upon dehydrogenation. We used state-of-the-art techniques in the framework of the density functional theory (DFT) to obtain the electronic ground-state geometries, and of the time- dependent DFT to evaluate the electronic excited-state properties. We computed the absorption cross-section of the species C24Hn (n=12,10,8,6,4,2,0) in their neutral and cationic charge-states. Similar calculations were performed for other PAHs and their fullydehydrogenated counterparts. pi electron energies are always found to be strongly affected by dehydrogenation. In all cases we examined, progressive dehydrogenation translates into a correspondingly progressive blue shift of the main electronic transitions. In particular, the pi-pi* collective resonance becomes broader and bluer with dehydrogenation. Its calculated energy position is therefore predicted to fall in the gap between the UV bump and the far-UV rise of the extinction curve. Since this effect appears to be systematic, it poses a tight observational limit on the column density of strongly dehydrogenated medium-sized PAHs.
Aims: We explore the relation between charge state of polycyclic aromatic hydrocarbons (PAHs) and extinction curve morphology. Methods: We fit extinction curves with a dust model including core-mantle spherical particles of mixed chemical composition (silicate core, $sp^2$ and $sp^3$ carbonaceous layers), and an additional molecular component. We use exact methods to calculate the extinction due to classical particles and accurate computed absorption spectra of PAHs in different charge states, for the contribution due to the molecular component, along a sample of five rather different lines of sight. Results: A combination of classical dust particles and mixtures of real PAHs satisfactorily matches the observed interstellar extinction curves. Variations of the spectral properties of PAHs in different charge states produce changes consistent with the varying relative strengths of the bump and non-linear far-UV rise.
We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic,neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obta in the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO-LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency-space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised $pitopi^star$ electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV. Doubly-ionised PAHs are found to display strong electronic transitions of $pitopi^star$ character in the near-IR, visible, and near-UV spectral ranges, like their singly-charged counterparts. While, as expected, the broad plasmon-like structure with its maximum at about 17-18 eV is relatively insensitive to the charge-state of the molecule, a systematic decrease with increasing positive charge of the absorption cross-section between about 6 and about 12 eV is observed for each member of the class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا