ترغب بنشر مسار تعليمي؟ اضغط هنا

Comet 103P/Hartley~2 was observed on Nov. 1-6, 2010, coinciding with the fly-by of the space probe EPOXI. The goal was to connect the large scale phenomena observed from the ground, with those at small scale observed from the spacecraft. The comet sh owed strong activity correlated with the rotation of its nucleus, also observed by the spacecraft. We report here the characterization of the solid component produced by this activity, via observations of the emission in two spectral regions where only grain scattering of the solar radiation is present. We show that the grains produced by this activity had a lifetime of the order of 5 hours, compatible with the spacecraft observations of the large icy chunks. Moreover, the grains produced by one of the active regions have a very red color. This suggests an organic component mixed with the ice in the grains.
Comet 67P/Churyumov-Gerasimenko is the main target of ESAs Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {it Philae}, it is necessary necessary to kno w the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in press
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا