ترغب بنشر مسار تعليمي؟ اضغط هنا

We review the results of the 1988 multi-wavelength campaign on the late-type eclipsing binary YY Geminorum. Observations include: broad-band optical and near infra-red photometry, simultaneous optical and ultraviolet (IUE) spectroscopy, X-ray (Ginga) and radio (VLA) data. From models fitted to the optical light curves, fundamental physical parameters have been determined together with evidence for transient maculations (spots) located near quadrature longitudes and intermediate latitudes. Eclipses were observed at optical, ultraviolet and radio wavelengths. Significant drops in 6cm radio emission near the phases of both primary and secondary eclipse indicate relatively compact radio emitting volumes that may lie between the binary components. IUE observations during secondary eclipse are indicative of a uniform chromosphere saturated with MgII plage-type emission and an extended volume of Ly$alpha$ emission. Profile fitting of high-dispersion H alpha spectra confirms the chromospheric saturation and indicates significant H$alpha$ opacity to heights of a few percent of the photospheric radius. There is evidence for an enhanced H alpha emission region visible near phase 0.25-0.35 which may be associated with a large spot on the primary and with two small optical flares which were also observed at other wavelengths: one in microwave radiation and the other in X-rays. For both flares, L_X/L_opt is consistent with energy release in closed magnetic structures.
We report on active region EUV dynamic events observed simultaneously at high-cadence with SUMER/SoHO and TRACE. Although the features appear in the TRACE Fe ix/x 171A images as jets seen in projection on the solar disk, the SUMER spectral line profi les suggest that the plasma has been driven along a curved large scale magnetic structure, a pre-existing loop. The SUMER observations were carried out in spectral lines covering a large temperature range from 10^4 K to 10^6 K. The spectral analysis revealed that a sudden heating from an energy deposition is followed by a high velocity plasma flow. The Doppler velocities were found to be in the range from 90 to 160 km/s. The heating process has a duration which is below the SUMER exposure time of 25 s while the lifetime of the events is from 5 to 15 min. The additional check on soft X-ray Yohkoh images shows that the features most probably reach 3 MK (X-ray) temperatures. The spectroscopic analysis showed no existence of cold material during the events.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا