ترغب بنشر مسار تعليمي؟ اضغط هنا

In quantum mechanics, observing is not a passive act. Consider a system of two quantum particles A and B: if a measurement apparatus M is used to make an observation on B, the overall state of the system AB will typically be altered. When this happen s no matter which local measurement is performed, the two objects A and B are revealed to possess peculiar correlations known as quantum discord. Here we demonstrate experimentally that the very act of local observation gives rise to an activation protocol which converts discord into distillable entanglement, a stronger and more useful form of quantum correlations, between the apparatus M and the composite system AB. We adopt a flexible two-photon setup to realize a three-qubit system (A,B,M) with programmable degrees of initial correlations, measurement interaction, and characterization processes. Our experiment demonstrates the fundamental mechanism underpinning the ubiquitous act of observing the quantum world, and establishes the potential of discord in entanglement generation.
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance (NMR) setup and employing geometric discord, we evaluate the quantum correlations of a state witho ut resorting to prior knowledge of its density matrix. The method is applicable to any (2 x d) system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا