ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the RAdial Velocity Experiment fourth data release (RAVE DR4), and a new metallicity calibration that will be also taken into account in the future RAVE DR5, we investigate the existence and the properties of super-solar metallicity stars ([M/H ] > +0.1 dex) in the sample, and in particular in the Solar neighbourhood. We find that RAVE is rich in super-solar metallicity stars, and that the local metallicity distribution function declines remarkably slowly up to +0.4 dex. Our results show that the kinematics and height distributions of the super-solar metallicity stars are identical to those of the [M/H] < 0 thin-disc giants that we presume were locally manufactured. The eccentricities of the super-solar metallicity stars indicate that half of them are on a roughly circular orbit (e < 0.15), so under the assumption that the metallicity of the interstellar medium at a given radius never decreases with time, they must have increased their angular momenta by scattering at corotation resonances of spiral arms from regions far inside the Solar annulus. The likelihood that a star will migrate radially does not seem to decrease significantly with increasing amplitude of vertical oscillations within range of oscillation amplitudes encountered in the disc.
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances and distances determined for 425 561 stars, which constitute the fourth public data release of the R Adial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the 2MASS photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron and nickel) are also given, based on a special-purpose pipeline which is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration website and the Vizier database.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا