ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields play an important role in shaping the structure and evolution of the interstellar medium (ISM) of galaxies, but the details of this relationship remain unclear. With SKA1, the 3D structure of galactic magnetic fields and its connectio n to star formation will be revealed. A highly sensitive probe of the internal structure of the magnetoionized ISM is the partial depolarization of synchrotron radiation from inside the volume. Different configurations of magnetic field and ionized gas within the resolution element of the telescope lead to frequency-dependent changes in the observed degree of polarization. The results of spectro-polarimetric observations are tied to physical structure in the ISM through comparison with detailed modeling, supplemented with the use of new analysis techniques that are being actively developed and studied within the community such as Rotation Measure Synthesis. The SKA will enable this field to come into its own and begin the study of the detailed structure of the magnetized ISM in a sample of nearby galaxies, thanks to its extraordinary wideband capabilities coupled with the combination of excellent surface brightness sensitivity and angular resolution.
We present an overview of the HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) Survey, which is the deepest systematic investigation of cold gas accretion in nearby spiral galaxies to date. Using the deep HI data that form the core of the survey, we ar e able to detect neutral hydrogen down to a typical column density limit of about 10$^{19}$ cm$^{-2}$ and thereby characterize the low surface brightness extra-planar and anomalous-velocity neutral gas in nearby galaxies with excellent spatial and velocity resolution. Through comparison with sophisticated kinematic modeling, our 3D HALOGAS data also allow us to investigate the disk structure and dynamics in unprecedented detail for a sample of this size. Key scientific results from HALOGAS include new insight into the connection between the star formation properties of galaxies and their extended gaseous media, while the developing HALOGAS catalogue of cold gas clouds and streams provides important insight into the accretion history of nearby spirals. We conclude by motivating some of the unresolved questions to be addressed using forthcoming 3D surveys with the modern generation of radio telescopes.
121 - George Heald 2012
The interstellar medium (ISM) in galaxies is directly affected by the mass and energy outflows originating in regions of star formation. Magnetic fields are an essential ingredient of the ISM, but their connection to the gaseous medium and its evolut ion remains poorly understood. Here we present the detection of a gradient in Faraday rotation measure (RM), co-located with a hole in the neutral hydrogen (HI) distribution in the disk of the nearby spiral galaxy NGC 6946. The gas kinematics in the same location show evidence for infall of cold gas. The combined characteristics of this feature point to a substantial vertical displacement of the initially plane-parallel ordered magnetic field, driven by a localized star formation event. This reveals how the large-scale magnetic field pattern in galaxy disks is directly influenced by internal energetic phenomena. Conversely, magnetic fields are observed to be an important ingredient in disk-halo interactions, as predicted in MHD simulations. Turbulent magnetic fields at smaller spatial scales than the observed RM gradient will also be carried from the disk and provide a mechanism for the dynamo process to amplify the ordered magnetic field without quenching. We discuss the observational biases, and suggest that this is a common feature of star forming galaxies with active disk-halo flows.
The Low Frequency Array (LOFAR) is under construction in the Netherlands and in several surrounding European countries. In this contribution, we describe the layout and design of the telescope, with a particular emphasis on the imaging characteristic s of the array when used in its standard imaging mode. After briefly reviewing the calibration and imaging software used for LOFAR image processing, we show some recent results from the ongoing imaging commissioning efforts. We conclude by summarizing future prospects for the use of LOFAR in observing the little-explored low frequency Universe.
We present early results from the ongoing Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) Survey, which is being performed with the Westerbork Synthesis Radio Telescope (WSRT). The HALOGAS Survey aims to detect and characterize the cold gas accretion process in nearby spirals, through sensitive observations of neutral hydrogen (HI) 21-cm line emission. In this contribution, we present an overview of ongoing analyses of several HALOGAS targets.
We introduce a new, very deep neutral hydrogen (HI) survey being performed with the Westerbork Synthesis Radio Telescope (WSRT). The Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) Survey is producing an archive of some of the most sensitiv e HI observations available, on the angular scales which are most useful for studying faint, diffuse gas in and around nearby galaxies. The survey data are being used to perform careful modeling of the galaxies, characterizing their gas content, morphology, and kinematics, with the primary goal of revealing the global characteristics of cold gas accretion onto spiral galaxies in the local Universe. In this paper, we describe the survey sample selection, the data acquisition, reduction, and analysis, and present the data products obtained during our pilot program, which consists of UGC 2082, NGC 672, NGC 925, and NGC 4565. The observations reveal a first glimpse of the picture that the full HALOGAS project aims to illuminate: the properties of accreting HI in different types of spirals, and across a range of galactic environments. None of the pilot survey galaxies hosts an HI halo of the scale of NGC 891, but all show varying indications of halo gas features. We compare the properties of detected features in the pilot survey galaxies with their global characteristics, and discuss similarities and differences with NGC 891 and NGC 2403.
308 - George Heald 2010
One of the science drivers of the new Low Frequency Array (LOFAR) is large-area surveys of the low-frequency radio sky. Realizing this goal requires automated processing of the interferometric data, such that fully calibrated images are produced by t he system during survey operations. The LOFAR Imaging Pipeline is the tool intended for this purpose, and is now undergoing significant commissioning work. The pipeline is now functional as an automated processing chain. Here we present several recent LOFAR images that have been produced during the still ongoing commissioning period. These early LOFAR images are representative of some of the science goals of the commissioning team members.
50 - George Heald 2007
In recent years, it has become clear that large quantities of gas reside in the halos of many spiral galaxies. Whether the presence of this gas is ultimately a consequence of star formation activity in the disk, or accretion from outside of the galax y, is not yet understood. We present new, deep HI observations of NGC 4395 as part of a continuing observational program to investigate this issue. We have detected a number of gas clouds with masses and sizes similar to Milky Way HVCs. Some of these are in regions without currently ongoing star formation, possibly indicating ongoing gas accretion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا