ترغب بنشر مسار تعليمي؟ اضغط هنا

Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass sub strate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.
Polar molecules in selected quantum states can be guided, decelerated, and trapped using electric fields created by microstructured electrodes on a chip. Here we explore how transitions between two of these quantum states can be induced while the mol ecules are on the chip. We use CO (a 3-Pi(1), v=0) molecules, prepared in the J=1 rotational level, and induce the J=2 <-- J=1 rotational transition with narrow-band sub-THz (mm-wave) radiation. First, the mm-wave source is characterized using CO molecules in a freely propagating molecular beam, and both Rabi cycling and rapid adiabatic passage are examined. Then, we demonstrate that the mm-wave radiation can be coupled to CO molecules that are less than 50 micron above the chip. Finally, CO molecules are guided in the J=1 level to the center of the chip where they are pumped to the J=2 level, recaptured, and guided off the chip.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا