ترغب بنشر مسار تعليمي؟ اضغط هنا

The previous thermodynamic treatment for models with density and/or temperature dependent quark masses is shown to be inconsistent with the requirement of fundamental thermodynamics. We therefore study a fully self-consistent one according to the fun damental differential equation of thermodynamics. After obtaining a new quark mass scaling with the inclusion of both confinement and leading-order perturbative interactions, we investigate properties of strange quark matter in the fully consistent thermodynamic treatment. It is found that the equation of state become stiffer, and accordingly, the maximum mass of strange stars is as large as about 2 times the solar mass, if strange quark matter is absolutely or metastable.
57 - G.X. Peng , A. Li , U. Lombardo 2008
We study the properties of strange quark matter in equilibrium with normal nuclear matter. Instead of using the conventional bag model in quark sector, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condens ates. In nuclear matter, we adopt the equation of state from the Brueckner-Bethe-Goldstone approach with three-body forces. It is found that the mixed phase can occur, for a reasonable confinement parameter, near the normal nuclear saturation density, and goes over into pure quark matter at about 5 times the saturation. The onset of mixed and quark phases is compatible with the observed class of low-mass neutron stars, but it hinders the occurrence of kaon condensation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا