ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - J. S. Kim , G. N. Tam , 2015
Co-doped BaFe2As2 has been previously shown to have an unusually significant improvement of Tc (up to 2 K, or almost 10%) with annealing 1-2 weeks at 700 or 800 C, where such annealing conditions are insufficient to allow significant atomic diffusion . While confirming similar behavior in optimally Co-doped SrFe2As2 samples, the influence on Tc of strain induced by grinding to ~50 micron sized particles, followed by pressing the powder into a pellet using 10 kbar pressure, was found to increase the annealed transition width of 1.5 K by approximately a factor of ten. Also, the bulk discontinuity in the specific heat at Tc, deltaC, on the same pellet sample was completely suppressed by grinding. This evidence for a strong sensitivity of superconductivity to strain was used to optimize single crystal growth of Co-doped BaFe2As2. This strong dependence (both positive via annealing and negative via grinding) of superconductivity on strain in these two iron based 122 structure superconductors is compared to the unconventional heavy Fermion superconductor UPt3, where grinding is known to completely suppress superconductivity, and to recent reports of strong sensitivity of Tc to damage induced by electron-irradiation-induced point defects in other 122 structure iron-based superconductors, Ba(Fe0.76Ru0.24)2As2 and Ba1-xKxFe2As2. Both the electron irradiation and the introduction of strain by grinding are believed to only introduce non-magnetic defects, and argue for unconventional superconducting pairing.
The pairing symmetry in the iron-based superconductor Ba1-xKxFe2As2 may change from nodeless s-wave near x~0.4 and Tc>30 K, to nodal (either d-wave or s-wave) at x=1 and Tc<4 K. Theoretical interest has been focused on this possibility, where in the transition region both order parameters would be present and time reversal symmetry would be broken. We report specific heat in magnetic fields down to 0.4 K of three single crystals, free of low temperature magnetic anomalies, of heavily overdoped Ba1-xKxFe2As2, x= 0.91, 0.88, and 0.81, Tc(mid) ~ 5.6, 7.2 and 13 K and Hc2 ~ 4.5, 6, and 20 T respectively. The data can be analyzed in a two gap scenario, Delta2/Delta1 ~ 4, with the field dependence of gamma (=C/T as T->0) showing an S-shape vs H, with the suppression of the lower gap by 1 T and gamma ~ H**1/2 overall. Although such a non-linear gamma vs H is consistent with deep minima or nodes in the gap, it is not clear evidence for one, or both, of the gaps being nodal. Following the established analysis of the specific heat of d-wave cuprate superconductors containing line nodes, we present the specific heat/H**1/2 vs T/H**1/2 of these Ba1-xKxFe2As2 samples which all, due to the absence of magnetic impurities, convincingly show the scaling for line node behavior for the larger gap. There is however no clear observation of the nodal behavior C ~ alpha*T**2 in zero field at low temperatures, with alpha ~ 2 mJ/molK**3 being consistent with the data. This, with the scaling, leaves the possibility of extreme anisotropy in a nodeless larger gap, Delta2, such that the scaling works for fields above 0.25 to 0.5 T (0.2 to 0.4 K in temperature units), where this an estimate for the size of the deep minima in the Delta2 ~ 20-25 K gap. Thus, the change from nodeless to nodal gaps in Ba1-xKxFe2As2 may be closer to the KFe2As2 endpoint than x=0.91.
368 - G. R. Stewart 2015
The editors have dedicated this special issue on superconducting materials to Ted Geballe in honor of his numerous seminal contributions to the field of superconducting materials over more than 60 years, on the year of his 95th birthday. Here, as an executive summary, are just a few highlights of his research in superconductivity, leavened with some anecdotes, and ending with some of Teds general insights and words of wisdom.
122 - G. R. Stewart 2015
The cubic A15 structure metals, with over 60 distinct member compounds, held the crown of highest Tc superconductor starting in 1954 with the discovery of Tc=18 K in Nb3Sn. Tc increased over the next 20 years until the discovery in 1973 of Tc = 22.3 K (optimized to approximately 23 K a year later) in sputtered films of Nb3Ge. Attempts were made to produce - via explosive compression - higher (theorized to be 31-35 K) transition temperatures in not stable at ambient conditions A15 Nb3Si. However, the effort to continue the march to higher Tc values in A15 Nb3Si only resulted in a defect-suppressed Tc of 19 K by 1981. Focus in superconductivity research partially shifted with the advent of heavy Fermion superconductors (CeCu2Si2, UBe13, and UPt3 discovered in 1979, 1983 and 1984 respectively) and further shifted away from A15 superconductors with the discovery of the perovskite structure cuprate superconductors in 1986 with Tc=35 K. However, the A15 superconductors, and specifically doped Nb3Sn, are still the material of choice today for most applications where high critical currents (e. g. magnets with dc persistent fields up to 21 T) are required. Thus, this article discusses superconductivity, and the important physical properties and theories for the understanding thereof, in the A15 superconductors which held the record Tc for the longest time (32 years) of any known class of superconductor since the discovery of Tc=4.2 K in Hg in 1911. The discovery in 2008 of Tc=38 K at 7 kbar in A15 Cs3C60 (properly a member of the fullerene superconductor class), which is an insulator at 1 atm pressure and otherwise also atypical of the A15 class of superconductors, will be briefly discussed.
96 - J. S. Kim , K. Zhao , C. Q. Jin 2014
The specific heat of single crystal hole-doped Ca0.33Na0.67Fe2As2, Tc(onset)=33.7 K, was measured from 0.4 to 40 K. The discontinuity in the specific heat at Tc, deltaC, divided by Tc is 105 +- 5 mJ/molK2, consistent with values found previously for hole-doped Ba0.6K0.4Fe2As2 and somewhat above the general trend for deltaC/Tc vs Tc for the iron based superconductors established by Budko, Ni and Canfield. The usefulness of measured valued of deltaC/Tc as an important metric for the quality of samples is discussed.
52 - J. S. Kim , B. D. Faeth , Y. Wang 2012
Low temperature specific heat, C, in magnetic fields up to Hc2 is reported for underdoped Ba(Fe0.955Co0.045)2As2 (Tc=8 K) and for three overdoped samples Ba(Fe1-xCox)2As2 (x=0.103, 0.13, and 0.15, Tc=17.2, 16.5, and 11.7 K respectively). Previous mea surements of thermal conductivity (as a function of temperature and field) and penetration depth on comparable composition samples gave some disagreement as to whether there was fully gapped/nodal behavior in the under-/overdoped materials respectively. The present work shows that the measured behavior of the specific heat gamma (proportional to C/T as T->0, i. e. a measure of the electronic density of states at the Fermi energy) as a function of field approximately obeys gamma proportional to H**(0.5 +- 0.1), similar to the Volovik effect for nodal superconductors, for both the underdoped and the most overdoped Co samples. However, for the two overdoped compositions x=0.103 and 0.13, the low field (H < 10 T) data show a Volovik-like behavior of gamma proportional to H**(0.3-0.4), followed by an inflection point, followed at higher fields by gamma proportional to H**1. We argue that within the 2-band theory of superconductivity, an inflection point may occur if the interband coupling is dominant.
We report specific heat measurements on the Fe-based superconductor BaFe2(As0.7P0.3)2, a material on which previous penetration depth, NMR, and thermal conductivity measurements have observed a high density of low-energy excitations, which have been interpreted in terms of order parameter nodes. Within the resolution of our measurements, the low temperature limiting C/T is found to be linear in field, i.e. we find no evidence for a Volovik effect associated with nodal quasiparticles in either the clean or dirty limit. We discuss possible reasons for this apparent contradiction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا