ترغب بنشر مسار تعليمي؟ اضغط هنا

144 - F.-J. Jiang , U. Gerber 2011
We study the quantum phase transition from a super solid phase to a solid phase of rho = 1/2 for the extended Bose-Hubbard model on the honeycomb lattice using first principles Monte Carlo calculations. The motivation of our study is to quantitativel y understand the impact of theoretical input, in particular the dynamical critical exponent z, in calculating the critical exponent nu. Hence we have carried out four sets of simulations with beta = 2N^{1/2}, beta = 8N^{1/2}, beta = N/2, and beta = N/4, respectively. Here beta is the inverse temperature and N is the numbers of lattice sites used in the simulations. By applying data collapse to the observable superfluid density rho_{s2} in the second spatial direction, we confirm that the transition is indeed governed by the superfluid-insulator universality class. However we find it is subtle to determine the precise location of the critical point. For example, while the critical chemical potential (mu/V)_c occurs at (mu/V)_c = 2.3239(3) for the data obtained using beta = 2N^{1/2}, the (mu/V)_c determined from the data simulated with beta = N/2 is found to be (mu/V)_c = 2.3186(2). Further, while a good data collapse for rho_{s2}N can be obtained with the data determined using beta = N/4 in the simulations, a reasonable quality of data collapse for the same observable calculated from another set of simulations with beta = 8N^{1/2} can hardly be reached. Surprisingly, assuming z for this phase transition is determined to be 2 first in a Monte Carlo calculation, then a high quality data collapse for rho_{s2}N can be achieved for (mu/V)_c ~ 2.3184 and nu ~ 0.7 using the data obtained with beta = 8N^{1/2}. Our results imply that one might need to reconsider the established phase diagrams of some models if the accurate location of the critical point is crucial in obtaining a conclusion.
133 - F.-J. Jiang , U. Gerber 2009
Puzzled by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice as suggested in cite{Wenzel08}, we study a similar anisotropic spin-1/2 Heisenberg model on the honeycomb lattice. The critical point where the phase transition occurs due to the dimerization as well as the critical exponent $ u$ are analyzed in great detail. Remarkly, using most of the available data points in conjunction with the expected finite-size scaling ansatz with a sub-leading correction indeed leads to a consistent $ u = 0.691(2)$ with that calculated in cite{Wenzel08}. However by using the data with large number of spins $N$, we obtain $ u = 0.707(6)$ which agrees with the most accurate Monte Carlo O(3) value $ u = 0.7112(5)$ as well.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا