ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ($lesssim 10^9$ K) and quark fractions ($lesssim 30%$), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.
Non-rotating neutron stars are generally treated in theoretical studies as perfect spheres. Such a treatment, however, may not be correct if strong magnetic fields are present (such as for magnetars) and/or the pressure of the matter in the cores of neutron stars is non-isotropic (e.g., color superconducting). In this paper, we investigate the structure of non-spherical neutron stars in the framework of general relativity. Using a parameterized metric to model non-spherical mass distributions, we first derive a stellar structure equation for deformed neutron stars. Numerical investigations of this model equation show that the gravitational masses of deformed neutron stars depend rather strongly on the degree and type (oblate or prolate) of stellar deformation. In particular, we find that the mass of a neutron star increases with increasing oblateness but decreases with increasing prolateness. If this feature carries over to a full two-dimensional treatment of deformed neutron stars, this opens up the possibility that, depending on the type of stellar deformation, there may exist multiple maximum-mass neutron stars for one and for the same model for the nuclear equation of state.
Depending on mass and rotational frequency, gravity compresses the matter in the core regions of neutron stars to densities that are several times higher than the density of ordinary atomic nuclei. At such huge densities atoms themselves collapse, an d atomic nuclei are squeezed so tightly together that new particle states may appear and novel states of matter, foremost quark matter, may be created. This feature makes neutron stars superb astrophysical laboratories for a wide range of physical studies. And with observational data accumulating rapidly from both orbiting and ground based observatories spanning the spectrum from X-rays to radio wavelengths, there has never been a more exiting time than today to study neutron stars. The Hubble Space Telescope and X-ray satellites such as Chandra and XMM-Newton in particular have proven especially valuable. New astrophysical instruments such as the Five hundred meter Aperture Spherical Telescope (FAST), the square kilometer Array (skA), Fermi Gamma-ray Space Telescope (formerly GLAST), and possibly the International X-ray Observatory (now Advanced Telescope for High ENergy Astrophysics, ATHENA) promise the discovery of tens of thousands of new non-rotating and rotating neutron stars. The latter are referred to as pulsars. This paper provides a short overview of the impact of rotation on the structure and composition of neutron stars. Observational properties, which may help to shed light on the core composition of neutron stars--and, hence, the properties of ultra-dense matter--are discussed.
This paper gives an brief overview of the structure of hypothetical strange quarks stars (quark stars, for short), which are made of absolutely stable 3-flavor strange quark matter. Such objects can be either bare or enveloped in thin nuclear crusts, which consist of heavy ions immersed in an electron gas. In contrast to neutron stars, the structure of quark stars is determined by two (rather than one) parameters, the central star density and the density at the base of the crust. If bare, quark stars possess ultra-high electric fields on the order of 10^{18} to 10^{19} V/cm. These features render the properties of quark stars more multifaceted than those of neutron stars and may allow one to observationally distinguish quark stars from neutron stars.
124 - D. Blaschke 2011
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained wi thin the nuclear medium cooling scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.
147 - F. Weber 2011
This paper provides an overview of the possible role of Quantum Chromo Dynamics (QDC) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the co res of neutron stars. There is also the theoretical possibility that a significantly large number of up, down, and strange quarks may settle down in a new state of matter known as strange quark matter, which, by hypothesis, could be more stable than atomic nuclei. In the latter case new classes of self-bound, color superconducting objects, ranging from strange quark nuggets to strange quark stars, should exist. The properties of such objects will be reviewed along with the possible existence of deconfined quarks in neutron stars. Implications for observational astrophysics are pointed out.
Depending on the density reached in the cores of neutron stars, such objects may contain stable phases of novel matter found nowhere else in the Universe. This article gives a brief overview of these phases of matter and discusses astrophysical const raints on the high-density equation of state associated with ultra-dense nuclear matter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا