ترغب بنشر مسار تعليمي؟ اضغط هنا

308 - F. S. Masset 2012
We give an expression for the Lindblad torque acting on a low-mass planet embedded in a protoplanetary disk that is valid even at locations where the surface density or temperature profile cannot be approximated by a power law, such as an opacity tra nsition. At such locations, the Lindblad torque is known to suffer strong deviation from its standard value, with potentially important implications for type I migration, but the full treatment of the tidal interaction is cumbersome and not well suited to models of planetary population synthesis. The expression that we propose retains the simplicity of the standard Lindblad torque formula and gives results that accurately reproduce those of numerical simulations, even at locations where the disk temperature undergoes abrupt changes. Our study is conducted by means of customized numerical simulations in the low-mass regime, in locally isothermal disks, and compared to linear torque estimates obtained by summing fully analytic torque estimates at each Lindblad resonance. The functional dependence of our modified Lindblad torque expression is suggested by an estimate of the shift of the Lindblad resonances that mostly contribute to the torque, in a disk with sharp gradients of temperature or surface density, while the numerical coefficients of the new terms are adjusted to seek agreement with numerics. As side results, we find that the vortensity related corotation torque undergoes a boost at an opacity transition that can counteract migration, and we find evidence from numerical simulations that the linear corotation torque has a non-negligible dependency upon the temperature gradient, in a locally isothermal disk.
We provide torque formulae for low mass planets undergoing type I migration in gaseous disks. These torque formulae put special emphasis on the horseshoe drag, which is prone to saturation: the asymptotic value reached by the horseshoe drag depends o n a balance between coorbital dynamics (which tends to cancel out or saturate the torque) and diffusive processes (which tend to restore the unperturbed disk profiles, thereby desaturating the torque). We entertain here the question of this asymptotic value, and we derive torque formulae which give the total torque as a function of the disks viscosity and thermal diffusivity. The horseshoe drag features two components: one which scales with the vortensity gradient, and one which scales with the entropy gradient, and which constitutes the most promising candidate for halting inward type I migration. Our analysis, which is complemented by numerical simulations, recovers characteristics already noted by numericists, namely that the viscous timescale across the horseshoe region must be shorter than the libration time in order to avoid saturation, and that, provided this condition is satisfied, the entropy related part of the horseshoe drag remains large if the thermal timescale is shorter than the libration time. Side results include a study of the Lindblad torque as a function of thermal diffusivity, and a contribution to the corotation torque arising from vortensity viscously created at the contact discontinuities that appear at the horseshoe separatrices. For the convenience of the reader mostly interested in the torque formulae, section 8 is self-contained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا