ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase nois e floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.
We present a frequency domain model of shot noise in the photodetection of ultrashort optical pulse trains using a time-varying analysis. Shot noise-limited photocurrent power spectral densities, signal-to-noise expressions, and shot noise spectral c orrelations are derived that explicitly include the finite response of the photodetector. It is shown that the strength of the spectral correlations in the shot noise depends on the optical pulse width, and that these correlations can create orders-of-magnitude imbalance between the shot noise-limited amplitude and phase noise of photonically generated microwave carriers. It is also shown that only by accounting for spectral correlations can shot noise be equated with the fundamental quantum limit in the detection of optical pulse-to-pulse timing jitter.
We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cry ogenic microwave oscillators. At 1 Hz offset from a 10 GHz carrier, the phase noise is below -100 dBc/Hz, limited by the optical reference. For offset frequencies > 10 kHz, the phase noise is shot noise limited at -145 dBc/Hz. An analysis of the contribution of the residual noise from the Er:fiber optical frequency divider is also presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا