ترغب بنشر مسار تعليمي؟ اضغط هنا

Cilia and flagella are hair-like extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consi sts of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
We discuss the motion of colloidal particles relative to a two component fluid consisting of solvent and solute. Particle motion can result from (i) net body forces on the particle due to external fields such as gravity; (ii) slip velocities on the p article surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibits characteristic differences in cases (i) and (ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا