ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_odot-10M_odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperatu re nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($chi_{rm BH}gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($Tlesssim 1,{rm MeV}$), unbound, neutron-rich material ($M_{rm ej}sim 0.05M_odot-0.20M_odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{rm max}sim 15,{rm MeV}$) with typical neutrino luminosity $L_ usim 10^{53},{rm erg/s}$, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting $sim 10,{rm ms}$, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron-rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses $M_{rm BH}sim 7M_odot-10M_odot$ and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared post-merger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.
Black hole-neutron star mergers resulting in the disruption of the neutron star and the formation of an accretion disk and/or the ejection of unbound material are prime candidates for the joint detection of gravitational-wave and electromagnetic sign als when the next generation of gravitational-wave detectors comes online. However, the disruption of the neutron star and the properties of the post-merger remnant are very sensitive to the parameters of the binary. In this paper, we study the impact of the radius of the neutron star and the alignment of the black hole spin for systems within the range of mass ratio currently deemed most likely for field binaries (M_BH ~ 7 M_NS) and for black hole spins large enough for the neutron star to disrupt (J/M^2=0.9). We find that: (i) In this regime, the merger is particularly sensitive to the radius of the neutron star, with remnant masses varying from 0.3M_NS to 0.1M_NS for changes of only 2 km in the NS radius; (ii) 0.01-0.05M_sun of unbound material can be ejected with kinetic energy >10^51 ergs, a significant increase compared to low mass ratio, low spin binaries. This ejecta could power detectable optical and radio afterglows. (iii) Only a small fraction (<3%) of the Advanced LIGO events in this parameter range have gravitational-wave signals which could offer constraints on the equation of state of the neutron star. (iv) A misaligned black hole spin works against disk formation, with less neutron star material remaining outside of the black hole after merger, and a larger fraction of that material remaining in the tidal tail instead of the forming accretion disk. (v) Large kicks (v>300 km/s) can be given to the final black hole as a result of a precessing BHNS merger, when the disruption of the neutron star occurs just outside or within the innermost stable spherical orbit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا