ترغب بنشر مسار تعليمي؟ اضغط هنا

Many Standard Model extensions can contribute to four-lepton signals at large colliders. We review the particular case of leptophilic interactions eventually observable at the LHC and the ILC, paying special attention to the addition of a new vector boson coupled to muon minus tau lepton number, $Z_{mu - tau}$, and emphasizing the prospects at a very large hadron collider with $sqrt s =$ 100 TeV. We also discuss in this case the new contribution to two-lepton (Drell-Yan) production when the new leptophilic interaction has a non-vanishing kinetic mixing with the SM.
We address the possible impact of New Physics on neutrino oscillation experiments. This can modify the neutrino production, propagation and/or detection, making the full cross section non-factorizable in general. Thus, for example, the neutrino flux may not be properly described assuming an unitary MNS matrix and/or neutrinos may propagate differently depending of their Dirac or Majorana character. Interestingly enough, present limits on New Physics still allow for observable effects at future neutrino experiments.
We review the present electroweak precision data constraints on the mediators of the three types of see-saw mechanisms. Except in the see-saw mechanism of type I, with the heavy neutrino singlets being mainly produced through their mixing with the St andard Model leptons, LHC will be able to discover or put limits on new scalar (see-saw of type II) and lepton (see-saw of type III) triplets near the TeV. If discovered, it may be possible in the simplest models to measure the light neutrino mass and mixing properties that neutrino oscillation experiments are insensitive to.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا