ترغب بنشر مسار تعليمي؟ اضغط هنا

The Initial Mass Function (IMF) of early-type galaxies (ETGs) has been found to feature systematic variations by both dynamical and spectroscopic studies. In particular, spectral line strengths, based on gravity-sensitive features, suggest an excess of low-mass stars in massive ETGs, i.e. a bottom-heavy IMF. The physical drivers of IMF variations are currently unknown. The abundance ratio of alpha elements, such as [Mg/Fe], has been suggested as a possible driver of the IMF changes, although dynamical constraints do not support this claim. In this letter, we take advantage of the large SDSS database. Our sample comprises 24,781 high-quality spectra, covering a large range in velocity dispersion (100<sigma0<320 km/s) and abundance ratio (-0.1<[Mg/Fe]<+0.4). The large volume of data allows us to stack the spectra at fixed values of sigma0 and [Mg/Fe]. Our analysis -- based on gravity-sensitive line strengths -- gives a strong correlation with central velocity dispersion and a negligible variation with [Mg/Fe] at fixed sigma0. This result is robust against individual elemental abundance variations, and seems not to raise any apparent inconsistency with the alternative method based on galaxy dynamics.
A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than isolated systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than isolated centrals, mainly because of gas-rich interactions with their companion galaxies.
We perform a spectroscopic study to constrain the stellar Initial Mass Function (IMF) by using a large sample of 24,781 early-type galaxies from the SDSS-based SPIDER survey. Clear evidence is found of a trend between IMF and central velocity dispers ion, sigma0, evolving from a standard Kroupa/Chabrier IMF at 100km/s towards a more bottom-heavy IMF with increasing sigma0, becoming steeper than the Salpeter function at sigma0>220km/s. We analyze a variety of spectral indices, corrected to solar scale by means of semi-empirical correlations, and fitted simultaneously with extended MILES (MIUSCAT) stellar population models. Our analysis suggests that sigma0, rather than [alpha/Fe], drives the IMF variation. Although our analysis cannot discriminate between a single power-law (unimodal) and a low-mass (<0.5MSun) tapered (bimodal) IMF, we can robustly constrain the fraction in low-mass stars at birth, that is found to increase from 20% at sigma0~100km/s, up to 80% at sigma0~300km/s. Additional constraints can be provided with stellar mass-to-light (M/L) ratios: unimodal models predict M/L significantly larger than dynamical M/L, across the whole sigma0 range, whereas a bimodal IMF is compatible. Our results are robust against individual abundance variations. No significant variation is found in Na and Ca in addition to the expected change from the correlation between [alpha/Fe] and sigma0. [Abridged]
We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group (FG) candidates identified in our previous work using SDSS and RASS data. Four candidates (out of six) exhibit extended X-ray emission, confirming them as true FGs. For the other two groups, the RASS emission has its origin as either an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources. Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band magnitude gap between the seed elliptical and the second-rank galaxy. However, the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total flux, which is greatly underestimated when using SDSS (relative to Sersic) magnitudes. This implies that many FGs may be actually missed when using SDSS data, a fact that should be carefully taken into account when comparing the observed number densities of FGs to the expectations from cosmological simulations. The similarity in the properties of seed--FG and non-fossil ellipticals, found in our previous study, extends to the sample of X-ray confirmed FGs, indicating that bright ellipticals in FGs do not represent a distinct population of galaxies. For one system, we also find that the velocity distribution of faint galaxies is bimodal, possibly showing that the system formed through the merging of two groups. This undermines the idea that all selected FGs form a population of true fossils.
Using optical-optical and optical-NIR colors, we analyze the radial dependence of age and metallicity inside massive (M* > 10^10.5 MSun), low-redshift (z<0.1), early-type galaxies (ETGs), residing in both high-density group regions and the field. On average, internal color gradients of ETGs are mainly driven by metallicity, consistent with previous studies. However, we find that group galaxies feature positive age gradients, Nabla_t, i.e. a younger stellar population in the galaxy center, and steeper metallicity gradients, compared to the field sample, whose Nabla_t ranges from negative in lower mass galaxies, to positive gradients at higher mass. These dependencies yield new constraints to models of galaxy formation and evolution. We speculate that age and metallicity gradients of group ETGs result from (either gas-rich or minor-dry) mergers and/or cold-gas accretion, while field ETGs exhibit the characteristic flatter gradients expected from younger, more metal-rich, stars formed inside--out by later gas-cooling.
We present a new sample of 25 fossil groups (FGs) at z < 0.1, along with a control sample of seventeen bright ellipticals located in non-fossil systems. Both the global properties of FGs (e.g. X-ray luminosity) as well as the photometric properties ( i.e. isophotal shape parameter, a4) and spectroscopic parameters (e.g. the alpha-enhancement) of their first-ranked ellipticals are consistent with those of the control sample. This result favors a scenario where FGs are not a distinct class of systems, but rather a common phase in the life of galaxy groups. We also find no evidence for an evolutionary sequence explaining the formation of galaxies in fossil systems through the merging of galaxies in compact groups.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا