ترغب بنشر مسار تعليمي؟ اضغط هنا

458 - F. Faedi 2013
We obtained high-resolution, high-contrast optical imaging in the SDSS $i$ band with the LuckyCam camera mounted on the 2.56m Nordic Optical Telescope, to search for faint stellar companions to 16 stars harbouring transiting exoplanets. The Lucky Ima ging technique uses very short exposures to obtain near diffraction-limited images yielding sub-arcsecond sensitivity, allowing us to search for faint stellar companions within the seeing disc of the primary planet host. Here we report the detection of two candidate stellar companions to the planet host TrES-1 at separations $<6.5arcsec$ and we confirm stellar companions to CoRoT-2, CoRoT-3, TrES-2, TrES-4, and HAT-P-7 already known in the literature. We do not confirm the candidate companions to HAT-P-8 found via Lucky Imaging by citet{Bergfors2013}, however, most probably because HAT-P-8 was observed in poor seeing conditions. Our detection sensitivity limits allow us to place constraints on the spectral types and masses of the putative bound companions to the planet host stars in our sample. If bound, the stellar companions identified in this work would provide stringent observational constraints to models of planet formation and evolution. In addition these companions could affect the derived physical properties of the exoplanets in these systems.
We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ mj and radius 1.653$^{+0.090}_{-0.083}$ rj. It orbits a F9 star, evolving off the main sequen ce, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ mj and $0.672^{+0.049}_{-0.046}$ mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as $sim$50 M$_{oplus}$ in the case of WASP-57b. However, the composition of the deep interior of exoplanets remain still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets physical properties.
We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of $4.055259 pm 0.000008$,d, Transit Epoch T$_{0}=2455342.9688pm0.0002$,(HJD), of duration $0.1168 pm 0.0008$,d. A c ombined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of $mpl=0.28pm0.03,mj$ and a radius of $rpl=1.27pm0.04,rj$, resulting in a mean density of $0.14 pm 0.02,rhoj$. The stellar parameters are mass $mstar = 0.93 pm 0.03,msun$, radius $rstar = 0.895pm 0.23,rsun$, and age $9^{+3}_{-4}$,Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be feh,$= -0.12pm0.1$,dex, and we find the planet to have an equilibrium temperature of $1116^{+33}_{-32}$,K,. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.
191 - F. Faedi 2010
We used photometric data from the WASP (Wide-Angle Search for Planets) survey to explore the possibility of detecting eclipses and transit signals of brown dwarfs, gas giants and terrestrial companions in close orbit around white dwarfs. We performed extensive Monte Carlo simulations and we found that for Gaussian random noise WASP is sensitive to companions as small as the Moon orbiting a $Vsim$12 white dwarf. For fainter stars WASP is sensitive to increasingly larger bodies. Our sensitivity drops in the presence of co-variant noise structure in the data, nevertheless Earth-size bodies remain readily detectable in relatively low S/N data. We searched for eclipses and transit signals in a sample of 194 white dwarfs in the WASP archive however, no evidence for companions was found. We used our results to place tentative upper limits to the frequency of such systems. While we can only place weak limits on the likely frequency of Earth-sized or smaller companions; brown dwarfs and gas giants (radius$simeq$ R$_{jup}$) with periods $leq$0.2 days must certainly be rare ($<10%$). More stringent constraints requires significantly larger white dwarf samples, higher observing cadence and continuous coverage. The short duration of eclipses and transits of white dwarfs compared to the cadence of WASP observations appears to be one of the main factors limiting the detection rate in a survey optimised for planetary transits of main sequence stars.
We have performed extensive simulations to explore the possibility of detecting eclipses and transits of close, sub-stellar and planetary companions to white dwarfs in WASP light-curves. Our simulations cover companions $sim0.3Re<{rm R}_{pl}<12Re$ an d orbital periods $2{rm h}<P<15{rm d}$, equivalent to orbital radii $0.003{rm AU} < a < 0.1{rm AU}$. For Gaussian random noise WASP is sensitive to transits by companions as small as the Moon orbiting a $textrm{V}simeq$12 white dwarf. For fainter white dwarfs WASP is sensitive to increasingly larger radius bodies. However, in the presence of correlated noise structure in the light-curves the sensitivity drops, although Earth-sized companions remain detectable in principle even in low S/N data. Mars-sized, and even Mercury-sized bodies yield reasonable detection rates in high-quality light-curves with little residual noise. We searched for eclipses and transit signals in long-term light-curves of a sample of 194 white dwarfs resulting from a cross-correlation of the McCook $&$ Sion catalogue and the WASP archive. No evidence for eclipsing or transiting sub-stellar and planetary companions was found. We used this non-detection and results from our simulations to place tentative upper limits to the frequency of such objects in close orbits at white dwarfs. While only weak limits can be placed on the likely frequency of Earth-sized or smaller companions, brown dwarfs and gas giants (radius $approx Rjup$) with periods $<0.1-0.2$ days must certainly be rare ($<10%$). More stringent constraints likely requires significantly larger white dwarf samples, higher observing cadence and continuous coverage. The short duration of eclipses and transits of white dwarfs compared to the cadence of WASP observations appears to be one of the main factors limiting the detection rate in a survey optimised for planetary transits of main sequence stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا