ترغب بنشر مسار تعليمي؟ اضغط هنا

Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anis otropy of the IDGRB measured on small scales by Fermi-LAT. We aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. We model the MSPs spatial distribution in the Galaxy and the gamma-ray emission parameters by considering radio and gamma-ray observational constraints. By simulating a large number of MSPs populations, we compute the average diffuse emission and the anisotropy 1-sigma upper limit. The emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10 degrees in latitude. The 1-sigma upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30 degrees. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude gamma-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes. Nevertheless, given the MSP distribution, we expect them to contribute significantly to the gamma-ray diffuse emission at low latitudes. Since, along the galactic disk, the population of young Pulsars overcomes in number the one of MSPs, we compute the gamma-ray emission from the whole population of unresolved Pulsars in two low-latitude regions: the inner Galaxy and the galactic center.
The annihilation of dark matter particles in the halo of galaxies may end up into gamma rays, which travel almost unperturbed till to their detection at Earth. This annihilation signal can exhibit an anisotropic behavior quantified by the angular pow er spectrum, whose properties strongly depend on the dark matter distribution and its clumpiness. We use high resolution pure dark matter N-body simulations to quantify the contribution of different components (main halo and satellites) to the global signal as a function of the analytical profile adopted to describe the numerical results. We find that the smooth main halo dominates the angular power spectrum of the gamma-ray signal up to quite large multipoles, where the sub-haloes anisotropy signal starts to emerge, but the transition multipole strongly depends on the assumed radial profile. The extrapolation down to radii not resolved by current numerical simulations can affect both the normalization and the shape of the gamma-ray angular power spectrum. For the sub-haloes described by an asymptotically cored dark matter distribution, the angular power spectrum shows an overall smaller normalization and a flattening at high multipoles. Our results show the criticality of the dark matter density profile shape in gamma-ray anisotropy searches, and evaluate quantitatively the intrinsic errors occurring when extrapolating the dark matter radial profiles down to spatial scales not yet explored by numerical simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا