ترغب بنشر مسار تعليمي؟ اضغط هنا

197 - Fotis P. Gavriil 2009
We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (k T ~ 1.0 keV) plus power-law ($Gamma$ ~ 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27^+2_-3 eV, from which we determine a column density of 7+/-1x10^17 cm^-2 via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10^3.6 erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that 1A 1744-361 is an atoll source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.
After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the fir st seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4-1.8times103 s. The first five burst spectra are well modeled by blackbodies, with temperatures kT ~ 2-9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9pm0.4)times10-7 Hz, which recovered with a decay time of 17pm 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.
99 - F. P. Gavriil 2008
We report detection of magnetar-like X-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be rotation-powered, has an inferred surface dipolar magnetic field of 4.9x10^13 G, hi gher than those of the vast majority of rotation-powered pulsars, but lower than those of the ~12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior, and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.
124 - Fotis P. Gavriil 2007
After 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months. During the active phase, several bursts were detected, and many aspects of the X-ray emission changed. We report on the discovery of six X-ray bursts, the first ever seen from this AXP in ~10 years of Rossi X-ray Timing Explorer (RXTE) monitoring. All the bursts occurred in the interval between 2006 April 6 and 2007 February 7. The bursts had the canonical fast rise slow decay profiles characteristic of SGR/AXP bursts. The burst durations ranged from 8-3x10^3 s as characterized by T90,these are very long durations even when compared to the broad T90 distributions of other bursts from SGRs and AXPs. The first five burst spectra are well modeled by simple blackbodies, with temperature kT ~2-6 keV. However, the sixth burst had a complicated spectrum consisting of at least three emission lines with possible additional emission and absorption lines. The most significant feature was at ~14 keV. Similar 14-keV spectral features were seen in bursts from AXPs 1E 1048.1-5937 and XTE J1810-197. If this feature is interpreted as a proton cyclotron line, then it supports the existence of a magnetar-strength field for these AXPs. Several of the bursts were accompanied by a short-term pulsed flux enhancement. We discuss these events in the context of the magnetar model.
We report on the serendipitous discovery of a 442-Hz pulsar during a Rossi X-ray Timing Explorer (RXTE) observation of the globular cluster NGC 6440. The oscillation is detected following a burst-like event which was decaying at the beginning of the observation. The time scale of the decay suggests we may have seen the tail-end of a long-duration burst. Low-mass X-ray binaries (LMXBs) are known to emit thermonuclear X-ray bursts that are sometimes modulated by the spin frequency of the star, the so called burst oscillations. The pulsations reported here are peculiar if interpreted as canonical burst oscillations. In particular, the pulse train lasted for ~500 s, much longer than in standard burst oscillations. The signal was highly coherent and drifted down by ~2x10^-3 Hz, much smaller than the ~Hz drifts typically observed during normal bursts. The pulsations are reminiscent of those observed during the much more energetic ``superbursts, however, the temporal profile and the energetics of the burst suggest that it was not the tail end nor the precursor feature of a superburst. It is possible that we caught the tail end of an outburst from a new `intermittent accreting X-ray millisecond pulsar, a phenomenon which until now has only been seen in HETE J1900.1$-$2455 (Galloway et al. 2007). We note that (Kaaret et al. 2003) reported the discovery of a 409.7 Hz burst oscillation from SAX J1748.9-2021, also located in NGC 6440. However, Chandra X-ray Observatory imaging indicates it contains several point-like X-ray sources, thus the 442 Hz object is likely a different source.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا