ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-optical transitions between Landau levels can provide precise spectroscopic information on the electronic structure and excitation spectra of graphene, enabling probes of substrate and many-body effects. We calculate the magneto-optical condu ctivity of large-size graphene flakes using a tight-binding approach. Our method allows us to directly compare the magneto-optical response of an isolated graphene flake with one aligned on hexagonal boron nitride giving rise to a periodic superlattice potential. The substrate interaction induces band gaps away from the Dirac point. In the presence of a perpendicular magnetic field Landau-level like structures emerge from these zero-field band gaps. The energy dependence of these satellite structures is, however, not easily accessible by conventional probes of the density of states by varying the back-gate voltage. Here we propose the magneto-optical probing of the superlattice perturbed spectrum. Our simulation includes magneto-excitonic effects in first-order perturbation theory. Our approach yields a quantitative explanation of recently observed Landau-level dependent renormalizations of the Fermi velocity.
57 - L. A. Chizhova , F. Libisch , 2014
Graphene flakes placed on hexagonal boron nitride feature in the presence of a magnetic field a complex electronic structure due to a hexagonal moire potential resulting from the van der Waals interaction with the substrate. The slight lattice mismat ch gives rise to a periodic supercell potential. Zone folding is expected to create replica of the original Dirac cone and Hofstadter butterflies. Our large-scale tight binding simulation reveals an unexpected coexistence of a relativistic and non-relativistic Landau level structure. The presence of the zeroth Landau level and its associated butterfly is shown to be the unambiguous signature for the occurrence of Dirac cone replica.
We present realistic simulations of quantum confinement effects in ballistic graphene quantum dots with linear dimensions of 10 to 40 nm. We determine wavefunctions and energy level statistics in the presence of disorder resulting from edge roughness , charge impurities, or short-ranged scatterers. Marked deviations from a simple Dirac billiard for massless fermions are found. We find a remarkably stable dependence of the nearest-neighbor level spacing on edge roughness suggesting that the roughness of fabricated devices can be potentially characterized by the distribution of measured Coulomb blockade peaks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا