ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - J.Paley , D. Gastler , E. Kearns 2014
Liquid Argon Time Projection Chambers (LArTPCs) are ideal detectors for precision neutrino physics. These detectors, when located deep underground, can also be used for measurements of proton decay, and astrophysical neutrinos. The technology must be completely developed, up to very large mass scales, and fully mastered to construct and operate these detectors for this physics program. As part of an integrated plan of developing these detectors, accurate measurements in LArTPC of known particle species in the relevant energy ranges are now deemed as necessary. The LArIAT program aims to directly achieve these goals by deploying LArTPC detectors in a dedicated calibration test beam line at Fermilab. The set of measurements envisaged here are significant for both the short-baseline (SBN) and long-baseline (LBN) neutrino oscillation programs in the US, starting with MicroBooNE in the near term and with the adjoint near and far liquid argon detectors in the Booster beam line at Fermilab envisioned in the mid-term, and moving towards deep underground physics such as with the long-baseline neutrino facility (LBNF) in the longer term.
The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensors range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetrap henyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission.
The ArgoNeuT liquid argon time projection chamber has collected thousands of neutrino and antineutrino events during an extended run period in the NuMI beam-line at Fermilab. This paper focuses on the main aspects of the detector layout and related t echnical features, including the cryogenic equipment, time projection chamber, read-out electronics, and off-line data treatment. The detector commissioning phase, physics run, and first neutrino event displays are also reported. The characterization of the main working parameters of the detector during data-taking, the ionization electron drift velocity and lifetime in liquid argon, as obtained from through-going muon data complete the present report.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا