ترغب بنشر مسار تعليمي؟ اضغط هنا

Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for all the science that relies on the latter quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. Matter-wave optics is still a young, but rapidly progressing science. The Space Atom Interferometer project (SAI), funded by the European Space Agency, in a multi-pronged approach aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible prototype of a single-axis atom interferometry accelerometer is under construction. At the same time the team is studying new schemes, e.g. based on degenerate quantum gases as source for the interferometer. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.
We report about the realization of a quantum device for force sensing at micrometric scale. We trap an ultracold $^{88}$Sr atomic cloud with a 1-D optical lattice, then we place the atomic sample close to a test surface using the same optical lattice as an elevator. We demonstrate precise positioning of the sample at the $mu$m scale. By observing the Bloch oscillations of atoms into the 1-D optical standing wave, we are able to measure the total force on the atoms along the lattice axis, with a spatial resolution of few microns. We also demonstrate a technique for transverse displacement of the atoms, allowing to perform measurements near either transparent or reflective test surfaces. In order to reduce the minimum distance from the surface, we compress the longitudinal size of the atomic sample by means of an optical tweezer. Such system is suited for studies of atom-surface interaction at short distance, such as measurement of Casimir force and search for possible non-Newtonian gravity effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا