ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intrica te quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics.
112 - Felix Werner 2009
Using a two-channel model, we show that the number of closed channel molecules in a two-component Fermi gas close to a Feshbach resonance is directly related to the derivative of the energy of the gas with respect to the inverse scattering length. We extract this quantity from the fixed node Monte-Carlo equation of state and we compare to the number of closed channel molecules measured in the Rice experiment with lithium [Partridge et al., Phys. Rev. Lett. 95, 020404 (2005)]. We also discuss the effect of a difference between the trapping potentials seen by a closed-channel molecule and by an open-channel pair of atoms in terms of an effective position-dependent scattering length.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا