ترغب بنشر مسار تعليمي؟ اضغط هنا

A boson sampling device is a specialised quantum computer that solves a problem which is strongly believed to be computationally hard for classical computers. Recently a number of small-scale implementations have been reported, all based on multi-pho ton interference in multimode interferometers. In the hard-to-simulate regime, even validating the devices functioning may pose a problem . In a recent paper, Gogolin et al. showed that so-called symmetric algorithms would be unable to distinguish the experimental distribution from the trivial, uniform distribution. Here we report new boson sampling experiments on larger photonic chips, and analyse the data using a scalable statistical test recently proposed by Aaronson and Arkhipov. We show the test successfully validates small experimental data samples against the hypothesis that they are uniformly distributed. We also show how to discriminate data arising from either indistinguishable or distinguishable photons. Our results pave the way towards larger boson sampling experiments whose functioning, despite being non-trivial to simulate, can be certified against alternative hypotheses.
We perform a comprehensive set of experiments that characterize bosonic bunching of up to 3 photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently in [1,2], predi cts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new, and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. Besides its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.
In quantum information, complementarity of quantum mechanical observables plays a key role. If a system resides in an eigenstate of an observable, the probability distribution for the values of a complementary observable is flat. The eigenstates of t hese two observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a qusix), encoded either in a hybrid polarization-orbital angular momentum or a pure orbital angular momentum Hilbert space. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution and tests on complementarity and logical indeterminacy.
Quantum communication employs the counter-intuitive features of quantum physics to perform tasks that are im- possible in the classical world. It is crucial for testing the foundations of quantum theory and promises to rev- olutionize our information and communication technolo- gies. However, for two or more parties to execute even the simplest quantum transmission, they must establish, and maintain, a shared reference frame. This introduces a considerable overhead in communication resources, par- ticularly if the parties are in motion or rotating relative to each other. We experimentally demonstrate how to circumvent this problem with the efficient transmission of quantum information encoded in rotationally invariant states of single photons. By developing a complete toolbox for the efficient encoding and decoding of quantum infor- mation in such photonic qubits, we demonstrate the fea- sibility of alignment-free quantum key-distribution, and perform a proof-of-principle alignment-free entanglement distribution and violation of a Bell inequality. Our scheme should find applications in fundamental tests of quantum mechanics and satellite-based quantum communication.
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition i s at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the quantum injected optical parametric amplification, that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS demonstration was carried out experimentally at room temperature with $Mgeq $ $10^{4}$. This result elicited an extended study on quantum cloning, quantum amplification and quantum decoherence. The related theory is outlined in the article where several experiments are reviewed such as the test on the no-signaling theorem and the dynamical interaction of the photon MQS with a Bose-Einstein condensate. In addition, the consideration of the Micro - Macro entanglement regime is extended into the Macro - Macro condition. The MQS interference patterns for large M were revealed in the experiment and the bipartite Micro-Macro entanglement was also demonstrated for a limited number of generated particles: $Mprecsim 12$. At last, the perspectives opened by this new method are considered in the view of further studies on quantum foundations and quantum measurement.
The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we consider two different regimes of measurement, demonstrating that, by exploiting an adaptive strategy, an optimal trade-off between the two quantities can be found, as observed in a single measurement process. Such experimental result, achieved for two sequential measurements, can be extended to N measurement processes.
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single photon to its polarization. Such transfer of quantum information, completely reversible, has been imple mented adopting a electrically tunable q-plate device and a Sagnac interferomenter with a Doves prism. The adopted scheme exhibits a high fidelity and low losses.
The orbital angular momentum of light (OAM) provides a promising approach for the implementation of multidimensional states (qudits) for quantum information purposes. In order to characterize the degradation undergone by the information content of qu bits encoded in a bidimensional subspace of the orbital angular momentum degree of freedom of photons, we study how the state fidelity is affected by a transverse obstruction placed along the propagation direction of the light beam. Emphasis is placed on the effects of planar and radial hard-edged aperture functions on the state fidelity of Laguerre-Gaussian transverse modes and the entanglement properties of polarization-OAM hybrid-entangled photon pairs.
Hybrid entangled states exhibit entanglement between different degrees of freedom of a particle pair and thus could be useful for asymmetric optical quantum network where the communication channels are characterized by different properties. We report the first experimental realization of hybrid polarization-orbital angular momentum (OAM) entangled states by adopting a spontaneous parametric down conversion source of polarization entangled states and a polarization-OAM transferrer. The generated quantum states have been characterized through quantum state tomography. Finally, the violation of Bells inequalities with the hybrid two photon system has been observed.
The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا